
Programming is Pain and Suffering

Avoiding the
Nightmare on Elm Street

Speaker Thomas Anagrius

Developer at Humio in Sweden

M.Sc. in Computer Science from Aarhus University
majoring in Computer Graphics

Geeky Interests

• Web Tech (JavaScript, Elm, NodeJS, React, WebSockets)
• Automation (Continuous Delivery, TTD)
• Functional Programming (Clojure, Elm, Swift, Rust, Haskell)
• Microservices and Immutable Infrastructure (Terraform, Mesos, Kubernetes)
• The list goes on... no more space.

Thomas Anagrius

Originally from Aarhus, Denmark.
Now living in Stockholm, Sweden.

This is not
an introduction to Elm

Elm at a glance
• Typed Functional Language
• Based on ML
• Compiles to JavaScript
• Made for front-end
• No Runtime Exceptions
• Very Fast

I’m neither trying to get you
to use Elm or not to use Elm

Our Product: Humio

Log Aggregation / Monitoring - Startup

Skala, Akka, Kafka, Elm

Stack

What

Elm and Humio

1 Year

ca 50.000

Lines

Production

Short Demo

WOW! You’re using Elm!

How did you dare?

Reaction

That’s Awesome

When starting every project
you have to make some

tech decisions

How do you decide?

The Normal Scenario:

Thomas, I’ve picked
you as the tech lead for a

new IT project

Great! So, we’re going to use:
Cassandra as the Database

Kubernetes for Containerization
Rust for Backend

React & Redux for Frontend

Um… what’s the
project about again?

The Best Tool for the Job™

Best to Write

Best Concurrency Support

Best Cultural Fit

Best Documentation

Best to Debug

Best PerformanceBest How?

Programming is Pain and Suffering

Life is Suffering
First Nobel Truth

The [Modified] First Nobel Truth

All programming is suffering. To program, you must suffer.

It is impossible to program without experiencing some kind
of suffering.

Your choice is

which pains

Every Choice has its Tradeoffs

JavaScript is pain.

Anyone who says differently is selling something.

Coding Pains: JavaScript
• Just Plain Bad Language
• Hard to Maintain in

bigger teams
• Extremely aggressive

type coercion
• Strange scoping (this)
• Many devs hate it

NaN == NaN → false
Only one Example Needed

Elm is pain.

Anyone who says differently is selling something.

Coding Pains: Elm

• Esoteric Syntax
• Not Mainstream
• Steep Learning Curve
• Compiled / Build Phase
• Hard to write
• Low Tool Support (Yet)

• Lacks Documentation
• No Examples of Large

Code Bases
• Few 3rd party libs
• Slower Time-to-Feature

Weigh Tech Decisions like you would any
other Business Decision.

Base it on strategy and the
problem at hand.

Keeping your developers
happy and excited

is a business strategy.

For Humio the Considerations were:

Our Problem Elm as Pain Reliever

Lot of data transformations Functional Language->

High volumes of data Must be fast->

Distributed Team Typed Language->

Company Culture Language Nerds->

Dashboards run for days No Runtime Errors->

Very interactive under load Must be fast->

Pains in Elm
1 year in

Early Adopter
Lots of Boilerplate
Routing Messages
Lack of Libraries
Architecture

Native Code
Refactoring
Learning Curve
Bad Modeling
Evil Compiler

Our Pains with Elm

1. Being an Early Adopter

No one has blogged about it.
No one has written on Stack Overflow

You have to figure it out yourself

Value

Time

Oct 2016

May 2017

Oct 2016

Apr 2016

Investment is a J-curve

Update to Elm 18

2. Be very careful with Native

At lease half of our troubles have
come dealing with Native JS

Code.

We had no choice. :(
Needed lots of charts and

no fully featured Elm Chart lib.

Type Safety
No Errors At Runtime

Developer Sanity

Say “Goodbye” to

They are like JNI for Java.
You talk to javascript through “an API”.

But they can be cumbersome.

Use Ports, Except when you can’t

3. Minimize Maybes

Instead of nulls, we have
maybes in Elm.

Coming from JavaScript

We’re used to dealing with JSON
directly from APIs. Implicitly

knowing that values “will be set”.

v
Bad

Possible Configurations

2#maybe

v
Bad

29 = 512
And Elm will force you to deal will all cases!

Combinatorial Explosion!

Better

26 = 64

Possible Configurations

Modeling

The most important skill
you need to pick up in Elm is

representing your problem properly.

Good

21 + 21 + 20 = 5
Possible Configurations

Live Coding
Modelling

You reduce logical errors and
complexity enormously

Recommended

Watch Richard Feldman’s
Presentation:

Making Impossible States Impossible

https://www.youtube.com/watch?v=IcgmSRJHu_8

The Compiler

Compiler, you are the bane of my existence.

Compiler, you are the joy of my life.

Last Thing

I have had days where I would not try
my implementation in the browser for
hours. Yet, I was sure it would work.

Elm lets you sleep well at night.

If it compiles it works.
Strong sense of

The Dream

Strongly Type Language
No Errors at Runtime

Time Traveling Debugger

Our Nightmare on Elm Street

Highcharts

