PROGRRAMMING IS PRIN AND SUFFERING

Otlo;

conference

9

Avoiding the
Nightmare on EIm Street

Speaker Thomas Anagrius

W follow us dgotochgo

Otlo,;

conference

9

Click ‘Rate Session’
to rate session
and ask questions.

W follow us dgotochgo

Thomas Anagrius

Developer at Humio in Sweden

M.Sc. in Computer Science from Aarhus University
majoring in Computer Graphics

Originally from Aarhus, Denmark.
Now living in Stockholm, Sweden.

Geeky Interests

Web Tech (JavaScript, ElIm, NodeJS, React, WebSockets)
Automation (Continuous Delivery, TTD)
Functional Programming (Clojure, EIm, Swift, Rust, Haskell)

Microservices and Immutable Infrastructure (Terraform, Mesos, Kubernetes)
The list goes on... no more space.

This is not
an introduction to Elm

Elm at a glance

e Typed Functional Language
e Based on ML

o Compiles to JavaScript

e Made for front-end

« No Runtime Exceptions

e Very Fast

initiaModel : Model
initiaWModel =
{ speaker =
{ name = “Thomas Anagrius"
, topic = "Pain“
, rating = 3
. mood = "Great"
H
, attendance
}

1@

Mon s 4
—— UPDATE

type Nsg
= EjectSpeaker
| ThrowRottenTomato

update : Msg -= Model - Model
update msg ({ speaker, attendance } as model) =
case msg of
EjectSpeaker -»
{ model | speaker = { speaker | mood = “Dead" } }

ThraowRottenTomato -=»
 eanelal

I’m neither trying to get you
to use Elm or not to use Elm

Q0

Our Product: Humio

What
Log Aggregation / Monitoring - Startup

Stack
Skala, Akka, Kafka, Elm

& HumiO

Elm and Humio

Production

1 Year

Lines

ca 50.000

Jchboards ing S0T0 an'

request_id

Cvertlist 3| Fiak

A e o

Raw Cwent Cormient

Name 4

Yhost
" Yparue
T Mol
t Azuares
: @

PO e

STatshcs 172206 Netches Foand > LA Swep Search

1]_ a @ - n ™ ¥ ~1 ‘I’H_I‘_-L [-"'_r_ ; '_:r‘ _n” 7,4__["_LL _an -_” |J|_<J‘-' L, __.r_"L_ oy -

W T TR T TR W W T e

e - W rl_r Lo man Bom ol

pl. hut“e_ta”, ph."annterernoe_td™, pl."inesrcked sab™, pd.“updates_at®™ FREON “pages” DE pl BFEET ph.Tarl_elug® = 570 NI IphLTonnferenoe_tdT = 300 [Toennn L, 4)
QUL -33-30 L0al%aid.lid poquent SO 230w iecbbIR0Lulaqguavy, dpCh | i6l0) GUERY UK db Jodmd qioue D.lan
SPIECT p€."1e™, ol "neme”, pO,. “Tayrat™, pho"erl_slag , gl ‘contearss™, ph. " wenn_=ifle , 0. "me: _xart_arder”™, pd. "footar_bitls", pi."*noter_snrt_arcer”,

p0. Lulld La", pi."conlerance L4%, pl. "irsacrted aL”™, p0."updated aL” raom "pages” AY Pl wexxs O.%arl slug' = 3. A4 (po."conlerance LE" < 329 |"Denu , 4)

Ghk0cufadglavmisdch [indo] JQUERY ZK dbe=l. lms

20170430 L3:29:43.172 ruzusas_ze=)jilzviiicl

HELELYL g€ "Ld", p0."name", pO, "laycutr®, poa"crl slag’ v pO. 'coaLenis”, pC'o2nu Jltle ', 360" corl ovder™, pid. "IcoLar LiLle™, p0."looics corL oxderc”,
FO. updatec_at”™ FRON "rmeguas” AS pd FESRT ((pC.orl _alug’ = S0 AND (pl."conlecunce 127 = 229 [Tmenc , §)

FUO. builc_ia®, pl."conlecunce_i1¢7, pl."ineserctsd at

Wbk atadgniy el [ve”a] SURRY T dle 1. 7mn acmws 0. Twn

2017-34-30 17

@5 iR

"leyoat®, “crl_wlog’, g0.'coat pl.">unu_=itle’,

SELECT pl."id

g bty Voo Taantervenas 1A%, Lt Areed AT, piL Tupda At Feem "o

e

200720430 L1:59:243.172 ragueas Lm0 fsizwaliclibonkicufadglarpisden |Sefo) QuEry K dbe) . .m:
BFIANT cl."alcx” PRAN oanfevence_croiwe” AR ol TNRFR JOTE “octtervasase” A3 ol 0K TR SEFR2 (o0, nant 1) M (ol - "canfaremoe_groop_td' r."3d%) 2MHN
3

121, "18% = 22, |

stouva.nl , 4)

vaug

plr2z0liae

faopdlegeerlamg log.g
S1234%4

TAAEDI1T.EG AR

Mopuntch =

iniaies, el iS0ruE ekl A

1"

gotoconf

Datsbase Latency

WA
¥ o

R Y W Y

® 59 @ 95 @ % O _1m

Slowest Queries

o DB Latency Over Time
- . .o, - 48 < » ‘An' '\ N a
4 ; yme N p0."url =
-) i s e e mt name” s
224 3 ELE i akg ferendce_id 3
v/
- ') ta time et - Ty
| ference_id nitle
- :J ') fecence 1d title ”
L 1 -
1) L) o M Pame)
0B Accesses (30d) o Identical Queries within a sirgle request o

N Y R

Deployments
a9 90 S0

DB Accesses per Request (7d)

Short Demo

Reaction

WOW! You’re using Elm!
That’s Awesome
How did you dare?

When starting every project
you have to make some
tech decisions

How do you decide?

The Normal Scenario:

Thomas, I’ve picked
you as the tech lead for a
new IT project

Great! So, we’re going to use:
Cassandra as the Database
Kubernetes for Containerization
Rust for Backend
React & Redux for Frontend

~ Um... what’s the
.project about again?

\ A

R N

The Best Tool for the Job™

Best How? Best Performance
Best to Write
Best Concurrency Support
Best Cultural Fit
Best Documentation

Best to Debug

PROGRRMMING IS PAIN AND SUFFERING

- First Nob
' Life is Sufferin

el Truth s
g .

The [Modified] First Nobel Truth

All programming is suffering. To program, you must suffer.

It is impossible to program without experiencing some kind
of suffering.

Your choice is
which pains

Every Choice has its Tradeoffs

JavaScript is pain.

Anyone who says differently is selling something.

Coding Pains: JavaScript

« Just Plain Bad Language

* Hard to Maintain in
bigger teams Only one Example Needed

« Extremely aggressive NaN == NaN - false
type coercion

« Strange scoping (this)
* Many devs hate it

Elm is pain.

Anyone who says differently is selling something.

Coding Pains: Elm

« Esoteric Syntax » Lacks Documentation

« Not Mainstream * No Examples of Large

« Steep Learning Curve Code Bases

. Compiled / Build Phase * Few 3rd party libs

« Hard to write * Slower Time-to-Feature

* Low Tool Support (Yet)

Weigh Tech Decisions like you would any
other Business Decision.
Base it on strategy and the
problem at hand.

Keeping your developers
happy and excited
is a business strategy.

For Humio the Considerations were:

Our Problem Elm as Pain Reliever

Lot of data transformations -> Functional Language
High volumes of data -> Must be fast

Very interactive under load -> Must be fast

Distributed Team -> Typed Language
Company Culture -> Language Nerds
Dashboards run for days -> No Runtime Errors

Pains in Elm
1 year in

Our Pains with Elm

Early Adopter

Lots of Boilerplate
Routing Messages
Lack of Libraries
Architecture

Native Code
Refactoring

Learning Curve
Bad Modeling
Evil Compiler

1. Being an Early Adopter

No one has blogged about it.
No one has written on Stack Overflow
You have to figure it out yourself

Investment is a J-curve

— Update to Elm 18

Oct 2016
& HumiO

2. Be very careful with Native
At lease half of our troubles have

come dealing with Native JS
Code.

var _humio$humio$Native_Highcharts = function() {

var List = _elm_lang$core$Native_List;
var VirtualDom = elm_lang$virtual dom$Native VirtualDom;

function eventDistChart(factList, data) {
var points = List.toArray(data.series);
points = (points.length > @) ? List.toArray(points[@].points) : [I];
var model = {
points: points.map(tupleToArray),
bucketSize: data.bucketSize,
bucketSizeText: data.bucketSizeText,
intervalStart: data.intervalStart,
intervalEnd: data.intervalEnd};

return new window.EventDistChart(model).build(factList);

}

B et e T [et e S N S 2 anc P . e 0 Iy

We had no choice. :(
Needed lots of charts and
no fully featured Elm Chart lib.

gotoconf

Datsbase Latency

WA
¥ o

R Y W Y

® 59 @ 95 @ % O _1m

Slowest Queries

o DB Latency Over Time
- . .o, - 48 < » ‘An' '\ N a
4 ; yme N p0."url =
-) i s e e mt name” s
224 3 ELE i akg ferendce_id 3
v/
- ') ta time et - Ty
| ference_id nitle
- :J ') fecence 1d title ”
L 1 -
1) L) o M Pame)
0B Accesses (30d) o Identical Queries within a sirgle request o

N Y R

Deployments
a9 90 S0

DB Accesses per Request (7d)

Say “Goodbye” to

Type Safety
No Errors At Runtime
Developer Sanity

Use Ports, Except when you can’t
They are like JNI for Java.

You talk to javascript through “an API”.
But they can be cumbersome.

3. Minimize Maybes

Instead of nulls, we have
maybes in Elm.

X : Maybe Int
=
Just 100

y : Maybe Int

y:
Nothing

Coming from JavaScript

We’re used to dealing with JSON
directly from APIs. Implicitly
knowing that values “will be set”.

Bad

type alias Response = {
code: Maybe String,
statistics: Maybe {
lines: Maybe Int,
views: Maybe (List String)
|
data: Maybe {
users: Maybe (List String),
ratings: Maybe (List Int),
uid: Maybe UID

errorMessage: Maybe String

case response.code of
Just "OK" —>
Accept
Just "Error" —>
Deny
-

Deny

Possible Configurations

2#maybe

Bad

type alias Response = {
code: Maybe String,
statistics: Maybe {
lines: Maybe Int,
views: Maybe (List String)
|
data: Maybe {
users: Maybe (List String),
ratings: Maybe (List Int),
uid: Maybe UID

errorMessage: Maybe String

Combinatorial Explosion!

27 =512

And Elm will force you to deal will all cases!

Better

type alias Response = {

code: String,

statistics: Maybe {
lines: Int,
views: Maybe (List String)

},

data: Maybe {
users: List String,
ratings: Maybe (List Int),
uid: Maybe UID

}

errorMessage: Maybe String

Possible Configurations

26 = 64

Modeling

The most important skill
you need to pick up in Elm is
representing your problem properly.

Good

type Response =
StatisticsResponse { lines: Int, views: Maybe (List String)}
| DataResponse { users: List String, uid: Maybe UID }
| ErrorResponse String

Possible Configurations

2"+ 21+ 20=5

Live Coding
Modelling

You reduce logical errors and
complexity enormously

Recommended

Watch Richard Feldman’s
Presentation:

Making Impossible States Impossible

https://www.youtube.com/watch?v=IcgmSRJHu_8

Last Thing

The Compiler

Compiler, you are the bane of my existence.

Compiler, you are the joy of my life.

| have had days where | would not try
my implementation in the browser for
hours. Yet, | was sure it would work.

GCOMPILES AND WORKS FIRST
TIME.

Elm lets you sleep well at night.

Strong sense of

If it compiles it works.

The Dream

Strongly Type Language
No Errors at Runtime
Time Traveling Debugger

Our Nightmare on Elm Street

HIGHCHARTS

Otlo,;

conference

9

ﬂ‘aage’

Remember to
rate this session
Thank you/

W follow us dgotochgo

