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Iz Hazelcast

Leading open source Java IMDG

Distributed Java collections, JCache, HD store, ...

Distributed computation and messaging
Embedded or client-server deployment
Integration modules & cloud friendly



I2 Hazelcast as a Distributed System

Scale up & scale out
Distributed from day one
Dynamic clustering and elasticity

Data partitioning and replication
Fault tolerance



> Distributed Systems

Collection of entities trying to solve a common

problem
Communication via passing messages
Uncertain and partial knowledge
We need distributed systems mostly because:

Scalability
Fault tolerance



52 Main Difficulties

Independent failures
Non-negligible message transmission delays
Unreliable communication



% Systems Models

System models come into play.
Interaction models
Failure modes
Notion of time

Consensus Problem

CAP Principle



pNg

Interaction Models

Synchronous

"
" Partially synchronous
"

Asynchronous

I: Hazelcast embraces the partially-synchronous model.

OperationTimeoutException



5  Failure modes

m Crash-stop
e Omission faults
4 Crash-recover
i Arbitrary failures (Byzantine)

Iz Hazelcast handles crash-recover failures by
making them look like crash-stop failures.



5% Time & Order: Physical time

Time is often used to order events in distributed
algorithmes.

Physical timestamps

Iz LatestUpdateMapMergePolicy in Hazelcast
Clock drifts can break latest update wins
Google TrueTime
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5% Time & Order: Logical Clocks

Logical clocks (Lamport clocks)
Local counters and communication

Defines happens-before relationship.
(i.e., causality)

Iz Hazelcast extensively uses it along with
primary-copy replication.
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5> Time & Order: Vector Clocks

Inferring causality by comparing timestamps.

Vector clocks are used to infer causality.
Dynamo-style databases use them to detect conflicts.

12 Lamport clocks work fine for Hazelcast because
there is only a single node performing the updates.
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5> Consensus

The problem of having a set of processes
agree on a value.

Leader election, state machine replication, strong
consistency, distributed transactions, ...

Safety
Liveness
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52 FLP Result

In the asynchronous model, distributed consensus
may not be solved within bounded time if at |least
one process can fail with crash-stop.

It is because we cannot differentiate between a
crashed process or a slow process.
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52 Unreliable Failure Detectors

Local failure detectors which rely on timeouts and
can make mistakes.
Two types of mistakes:

suspecting from a running process = ACCURACY
not suspecting from a failed process = COMPLETENESS
Different types of failure detectors.
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Two-Phase Commit (2PC)

2PC preserves sdfety, but it can lose liveness with
crash-stop failures.

. f? .
Ommy- Ommjt
C C

Phase 1 Phase 2

16



Three-Phase Commit (3PC)

3PC tolerates crash-stop failures and preserves
liveness, but can lose safety with network partitions
or crash-recover failures.
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5% Majority Based Consensus

Availability of majority is needed for liveness
and safety.

2f + 1 nodes tolerate failure of f nodes.
Resiliency to crash-stop, network partitions
and crash-recover.

Paxos, Zab, Raft, Viewstamped Replication
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5 Consensus: Recap

I: We have 2PC and 3PC in Hazelcast, but not
majority based consensus algorithms.

Consensus systems are mainly used for
achieving strong consistency.
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%> CAP Principle

Proposed by Eric Brewer in 2000.
Formally proved in 2002.

A shared-data system cannot achieve perfect
consistency and perfect availability in the

presence of network partitions.
AP versus CP
Widespread acceptance, and yet a lot of criticism.
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5% Consistency and Availability

Levels of consistency:
Data-centric (CP)
Client-centric (AP)

Levels of availability:
High availability
Sticky availability

Linearizable
Sequential
i Writes
Causal —> Following
i Reads

PRAM ~. Monotonic

/\ Writes

Read Your Monotonic
Writes Reads
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Iz Hazelcast & CAP Principle

Hazelcast is AP with primary-copy & async
replication.

primary-copy

async replication

P

)

.
strong consistency
on a stable cluster

high throughput
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sticky availability

possibility of losing
consistency on failures

22



5> No Hocus Pocus

A lot of variations in the abstractions and models.
Learn the fundamentals, the rest will change
anyway.
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75 Thanks!

Any questions ?



