
Distributed Systems Theory
for Mere Mortals

Ensar Basri Kahveci

1

I am Ensar Basri Kahveci

Hello!

Distributed Systems Engineer

twitter & github

website

@ Hazelcast

metanet

basrikahveci.com

2

Hazelcast

◉ Leading open source Java IMDG
◉ Distributed Java collections, JCache, HD store, ….
◉ Distributed computation and messaging
◉ Embedded or client-server deployment
◉ Integration modules & cloud friendly

3

Hazelcast as a Distributed System

◉ Scale up & scale out
◉ Distributed from day one
◉ Dynamic clustering and elasticity
◉ Data partitioning and replication
◉ Fault tolerance

4

◉ Collection of entities trying to solve a common
problem
○ Communication via passing messages
○ Uncertain and partial knowledge

◉ We need distributed systems mostly because:
○ Scalability
○ Fault tolerance

Distributed Systems

5

◉ Independent failures
◉ Non-negligible message transmission delays
◉ Unreliable communication

Main Difficulties

6

◉ System models come into play.
○ Interaction models
○ Failure modes
○ Notion of time

◉ Consensus Problem
◉ CAP Principle

Systems Models

7

◉ Synchronous
◉ Partially synchronous
◉ Asynchronous

Hazelcast embraces the partially-synchronous model.

OperationTimeoutException

Interaction Models

8

Failure modes

◉ Crash-stop
◉ Omission faults
◉ Crash-recover
◉ Arbitrary failures (Byzantine)

Hazelcast handles crash-recover failures by
making them look like crash-stop failures.

9

Time & Order: Physical time

◉ Time is often used to order events in distributed
algorithms.

◉ Physical timestamps
○ LatestUpdateMapMergePolicy in Hazelcast

◉ Clock drifts can break latest update wins
◉ Google TrueTime

10

Time & Order: Logical Clocks

◉ Logical clocks (Lamport clocks)
○ Local counters and communication

◉ Defines happens-before relationship.
○ (i.e., causality)

Hazelcast extensively uses it along with
primary-copy replication.

11

Time & Order: Vector Clocks

◉ Inferring causality by comparing timestamps.
◉ Vector clocks are used to infer causality.

○ Dynamo-style databases use them to detect conflicts.

Lamport clocks work fine for Hazelcast because
there is only a single node performing the updates.

12

Consensus

◉ The problem of having a set of processes
agree on a value.
○ Leader election, state machine replication, strong

consistency, distributed transactions, …

◉ Safety
◉ Liveness

13

FLP Result

◉ In the asynchronous model, distributed consensus
may not be solved within bounded time if at least
one process can fail with crash-stop.

◉ It is because we cannot differentiate between a
crashed process or a slow process.

14

Unreliable Failure Detectors

◉ Local failure detectors which rely on timeouts and
can make mistakes.

◉ Two types of mistakes:
○ suspecting from a running process ⇒ ACCURACY
○ not suspecting from a failed process ⇒ COMPLETENESS

◉ Different types of failure detectors.

15

Two-Phase Commit (2PC)

◉ 2PC preserves safety, but it can lose liveness with
crash-stop failures.

16

Three-Phase Commit (3PC)

◉ 3PC tolerates crash-stop failures and preserves
liveness, but can lose safety with network partitions
or crash-recover failures.

17

Majority Based Consensus

◉ Availability of majority is needed for liveness
and safety.
○ 2f + 1 nodes tolerate failure of f nodes.

◉ Resiliency to crash-stop, network partitions
and crash-recover.

◉ Paxos, Zab, Raft, Viewstamped Replication

18

Consensus: Recap

We have 2PC and 3PC in Hazelcast, but not
majority based consensus algorithms.

◉ Consensus systems are mainly used for
achieving strong consistency.

19

CAP Principle

◉ Proposed by Eric Brewer in 2000.
○ Formally proved in 2002.

◉ A shared-data system cannot achieve perfect
consistency and perfect availability in the
presence of network partitions.
○ AP versus CP

◉ Widespread acceptance, and yet a lot of criticism.

20

Consistency and Availability

◉ Levels of consistency:
Data-centric (CP)

Client-centric (AP)

◉ Levels of availability:
High availability

Sticky availability

21

Hazelcast & CAP Principle

◉ Hazelcast is AP with primary-copy & async
replication.

primary-copy strong consistency
on a stable cluster

sticky availability

async replication high throughput possibility of losing
consistency on failures

22

No Hocus Pocus

◉ A lot of variations in the abstractions and models.
◉ Learn the fundamentals, the rest will change

anyway.

23

Any questions ?

Thanks!

24

