Distributed Systems Theory
for Mere Mortals

Ensar Basri Kahveci

Hello!

I am Ensar Basri Kahveci

Distributed Systems Engineer @ Hazelcast
twitter & github metanet

website basrikahveci.com

Iz Hazelcast

Leading open source Java IMDG

Distributed Java collections, JCache, HD store, ...

Distributed computation and messaging
Embedded or client-server deployment
Integration modules & cloud friendly

I2 Hazelcast as a Distributed System

Scale up & scale out
Distributed from day one
Dynamic clustering and elasticity

Data partitioning and replication
Fault tolerance

> Distributed Systems

Collection of entities trying to solve a common

problem
Communication via passing messages
Uncertain and partial knowledge
We need distributed systems mostly because:

Scalability
Fault tolerance

52 Main Difficulties

Independent failures
Non-negligible message transmission delays
Unreliable communication

% Systems Models

System models come into play.
Interaction models
Failure modes
Notion of time

Consensus Problem

CAP Principle

pNg

Interaction Models

Synchronous

"
" Partially synchronous
"

Asynchronous

I: Hazelcast embraces the partially-synchronous model.

OperationTimeoutException

5 Failure modes

m Crash-stop
e Omission faults
4 Crash-recover
i Arbitrary failures (Byzantine)

Iz Hazelcast handles crash-recover failures by
making them look like crash-stop failures.

5% Time & Order: Physical time

Time is often used to order events in distributed
algorithmes.

Physical timestamps

Iz LatestUpdateMapMergePolicy in Hazelcast
Clock drifts can break latest update wins
Google TrueTime

10

5% Time & Order: Logical Clocks

Logical clocks (Lamport clocks)
Local counters and communication

Defines happens-before relationship.
(i.e., causality)

Iz Hazelcast extensively uses it along with
primary-copy replication.

"

5> Time & Order: Vector Clocks

Inferring causality by comparing timestamps.

Vector clocks are used to infer causality.
Dynamo-style databases use them to detect conflicts.

12 Lamport clocks work fine for Hazelcast because
there is only a single node performing the updates.

12

5> Consensus

The problem of having a set of processes
agree on a value.

Leader election, state machine replication, strong
consistency, distributed transactions, ...

Safety
Liveness

13

52 FLP Result

In the asynchronous model, distributed consensus
may not be solved within bounded time if at |least
one process can fail with crash-stop.

It is because we cannot differentiate between a
crashed process or a slow process.

14

52 Unreliable Failure Detectors

Local failure detectors which rely on timeouts and
can make mistakes.
Two types of mistakes:

suspecting from a running process = ACCURACY
not suspecting from a failed process = COMPLETENESS
Different types of failure detectors.

15

Two-Phase Commit (2PC)

2PC preserves sdfety, but it can lose liveness with
crash-stop failures.

. f? .
Ommy- Ommjt
C C

Phase 1 Phase 2

16

Three-Phase Commit (3PC)

3PC tolerates crash-stop failures and preserves
liveness, but can lose safety with network partitions
or crash-recover failures.

. q \ B
o8 p(ecomm\\ B ot — B
Comp:
Mimitp eCOm g
C C C

Phase 1 Phase 2 Phase 3

5% Majority Based Consensus

Availability of majority is needed for liveness
and safety.

2f + 1 nodes tolerate failure of f nodes.
Resiliency to crash-stop, network partitions
and crash-recover.

Paxos, Zab, Raft, Viewstamped Replication

18

5 Consensus: Recap

I: We have 2PC and 3PC in Hazelcast, but not
majority based consensus algorithms.

Consensus systems are mainly used for
achieving strong consistency.

19

%> CAP Principle

Proposed by Eric Brewer in 2000.
Formally proved in 2002.

A shared-data system cannot achieve perfect
consistency and perfect availability in the

presence of network partitions.
AP versus CP
Widespread acceptance, and yet a lot of criticism.

20

5% Consistency and Availability

Levels of consistency:
Data-centric (CP)
Client-centric (AP)

Levels of availability:
High availability
Sticky availability

Linearizable
Sequential
i Writes
Causal —> Following
i Reads

PRAM ~. Monotonic

/\ Writes

Read Your Monotonic
Writes Reads

21

Iz Hazelcast & CAP Principle

Hazelcast is AP with primary-copy & async
replication.

primary-copy

async replication

P

)

.
strong consistency
on a stable cluster

high throughput

s = =
—

sticky availability

possibility of losing
consistency on failures

22

5> No Hocus Pocus

A lot of variations in the abstractions and models.
Learn the fundamentals, the rest will change
anyway.

23

75 Thanks!

Any questions ?

