
Why BFF (Backend For Frontend)
Is Key to Your Microservices Journey

A Morningstar Case Study

Brian Grant
Krishnan Ramanathan

g Started programming professionally in
2005

g Joined Morningstar in late 2012

g Significant contributions to the
implementation and design of the BFF
we’re about to discuss

g Technology Manager on Morningstar’s
Individual Investor Mobile Team

An average Friday night in the Grant house

Brian Grant
About Us

About Us
Krishnan Ramanathan

g Director of Software Engineering

g 18+ years of experience building,
leading, managing and architecting
software systems

g Passionate about microservices, DevOps,
AI, Machine Learning, Mobile/Web
technology and delivering quality
software

5

Morningstar

Our mission is to create great products that
help investors reach their financial goals.
We have 4200+ employees in 27 countries worldwide,
providing local market expertise.

Our clients range in size from individual investors all the
way up to the world’s top asset management firms.

Who We Are

Data as of Sept 30, 2016. Includes assets under management and advisement for Morningstar Investment Management LLC, Morningstar Investment Services LLC, Morningstar Investment Management
Europe Ltd., and Morningstar Investment Management Australia Ltd., all of which are subsidiaries of Morningstar, Inc. Advisory services listed are provided by one or more of these entities, which are
authorized in the appropriate jurisdiction to provide such services.

6

Who We Are
How We Serve Our Clients

Our world-class investment
management organization is built
on a foundation of proprietary
research, data, and analytics that
uniquely positions us to provide a
more complete perspective on the
markets.

While other companies may offer
software, data, research, or ratings,
what sets us apart is the ability to
combine and deliver them all in
whatever way is best for our
clients.

Advice

Information

Information services listed are provided by Morningstar, Inc. Advice services listed are provided by one or more of the Investment Management group's members.

7

Backend for Frontend - BFF
Description from Sam Newman – Author of Building Microservices

Reference: http://samnewman.io/patterns/architectural/bff/

8

Our Microservices/API journey
~10 years back (A key B2B product)

"P" (Desktop)

"P" API

DB DB …

A monolith ?
A BFF ?

Other
Services

…

9

Our Microservices/API journey
~8 years back

"P" (Desktop)

"P" API

Product B Product C Product D

DB DB …

Aha! Reuse

Other
Services

…

10

Our Microservices/API journey
~4 years back

Securities API (Data api v1) Real-time API

Equity Fund Other types..
Exchanges

Product A Product B Product C

News API
v1

Portfolio
API v1

Aha! more
services

BFF BFF BFF

11

Our Microservices/API journey
~2 years back

Securities API v1
(Data api) Real-time API

Securities API v2
(Data api) Portfolio API v2

Portfolio API v1

Real-time API

News API v1

News API v2

What the
!@#$ another

version?

12

Mobile Solutions
Our apps

13

Our Apps Journey
~5 years back - Retail iPad

Web
app

Mobile
Service

DB

Auth
Service

Security
Service
Etc.…

Portfolio
Service

News
Service

Aha! We
were already

BFF

14

Our Apps Journey
~4 years back - Retail Smartphone

Web
app

Mobile
Service

DB

Auth
Service

Security
Service
Etc.…

Portfolio
Service

News
Service

15

Our BFF Implementation

• Domain Modeling
• Performance
• Consistent Error Handling

"By drawing an explicit boundary, you can
keep the model pure, and therefore potent,
where it is applicable. At the same time,
you avoid confusion when shifting your
attention to other CONTEXTS.
Integration across other boundaries
necessarily will involve some translation,
which you can analyze explicitly."

-- Eric Evans, Domain-Driven Design

16

Domain Modeling: Defining a Bounded Context

"A BOUNDED CONTEXT delimits the applicability of a particular model so that team
members have a clear and shared understanding of what has to be consistent and how it
relates to other CONTEXTS."

Our BFF Implementation

g Hybrid Data Models

/ Individual models with fields
populated from multiple data providers

/ Models composed of collections of
other models

g "News" News is Confusing News

g Naming is hard …

g … their names are wrong

17

Morningstar Commentary in the Smartphone App

Domain Modeling: Defining a Bounded Context

A Bounded Context gives you the flexibility to produce the model that’s right for your
application

Our BFF Implementation

Performance

18

Our BFF Implementation

Performance-related concerns addressed by our BFF

g Caching

g Reducing Client Client ”Chattiness”

g Parallelism & Asynchronous Operations

g Distributed, in-memory cache

/ Securities data is reusable across
requests

/ Long-term caching for data that rarely
changes

/ Batch & lazy-loading

/ Models or lists of models which are
expensive to produce

g HTTP response cache headers

/ Cache-Control: public for reusable,
public data

/ Cache-Control: private for client-
side only response caching

19

Performance: Caching
Our BFF Implementation

20

http://muppet.wikia.com/wiki/The_Newsman

A Word About Representational State Transfer (REST)

We interrupt this broadcast…

Our BFF Implementation

g I’m going to say “REST” several times

g You may not agree the way I use the
word ”REST”

g That probably doesn’t make me a bad
person

g I’m otherwise pretty easy to get along
with

21

Credit to Troy Hunt (@troyhunt)

A Word About Representational State Transfer (REST)
Our BFF Implementation

22

https://martinfowler.com/articles/richardsonMaturityModel.html

A Word About Representational State Transfer (REST)

Our RESTful guiding light: The “Richardson Maturity Model”

Our BFF Implementation

A Word About Representational State Transfer (REST)

23

Our BFF Implementation

Our RESTful guiding light: The “Richardson Maturity Model”

g Level 1: Resources
/ GET /products/RT/securities/${security_id} [/quote | /articles]

/ GET /products/RT/customers/${customer_id}/portfolios/${portfolio_id}/holdings

g Level 2: HTTP Verbs

/ GET, POST, PUT, DELETE, OPTIONS

g Level 3: Hypermedia Controls

/ Hypermedia As The Engine Of Application State (HATEOAS)

/ Just a little bit; more on this later…

g Misc. notes

/ Use of standard HTTP responses & headers; some custom headers when necessary

/ Some generalized endpoints, some more tailored to app views

24

http://muppet.wikia.com/wiki/The_Newsman

A Word About Representational State Transfer (REST)

We now return you to your regularly scheduled program…

Our BFF Implementation

Performance: Reducing Client Client ”Chattiness”

25

Our BFF Implementation

Reducing chattiness by creating ”view-specific" APIs for Portfolios

/products/RT/customers/${customer_id}/portfolios/${portfolio_id}/holdings

[
{

"HoldingId": 45380044, "SharePrice": 143.34, "MarketValue": 430.02, "Shares": 3, …
"Security": "https://mobileservice.monringstar.com/securities/USA:FB",
"Quote": "https://mobileservice.monringstar.com/securities/USA:FB/quote"

},
{

"HoldingId": 45380047, "SharePrice": 40.68, "MarketValue": 813.6, "Shares": 20, …
"Security": "https://mobileservice.monringstar.com/securities/USA:GOOG",
"Quote": "https://mobileservice.monringstar.com/securities/USA:GOOG/quote"

}, /* More holdings */
]

26

Smartphone Portfolio View

Performance: Reducing Client Client ”Chattiness”

Reducing chattiness by creating ”view-specific" APIs for Portfolios

Our BFF Implementation

Performance: Reducing Client Client ”Chattiness”

27

Our BFF Implementation

Reducing chattiness by creating ”view-specific" APIs for Portfolios

/products/RT/customers/${customer_id}/portfolios/${portfolio_id}/holdings

[
{

"HoldingId": 45380044, "SharePrice": 143.34, "MarketValue": 430.02, "Shares": 3, …
"Security": { "Name": "Facebook Inc A", "Currency": "USD", … },
"Quote": { "Price": 140.78, "PriceChange": -0.39, "OpenPrice": 141.2, … }

},
{

"HoldingId": 45380047, "SharePrice": 40.68, "MarketValue": 813.6, "Shares": 20, …
"Security": { "Name": "Alphabet Inc C", "Currency": "USD", … },
"Quote": { "Price": 824.67, "PriceChange": -3.21, "OpenPrice": 827 .96, … }

}, /* More holdings */
]

Performance: Reducing Client Client ”Chattiness”

28

Reducing chattiness by supporting multiple Security IDs

Our BFF Implementation

g /products/RT/securities/${comma_separated_security_ids} [/quote | /articles]

g /products/RT/securities/USA:FB,USA:GOOG,USA:AAPL/quote

Performance: Parallelism & Asynchronous Operations

29

Our BFF Implementation

Play Framework: promises & non-blocking asynchronous operations

public Promise<List<List<ArticleSummary>>> getTopArticlesForSecurities(List<String> securityIds) {
return Promise.sequence(securityIds.map(String securityId =>
getTopArticlesForSecurity(securityId)));

});
}

private Promise<List<ArticleSummary>> getTopArticlesForSecurity(String securityId) {
Promise<ArticleSummary> analysis = fetchArticleSummary("MorningstarAnalysis", securityId);
Promise<ArticleSummary> commentary = fetchArticleSummary("MorningstarCommentary", securityId);
Promise<ArticleSummary> thirdPartyNews = fetchArticleSummary("ThirdPartyNews", securityId);
Promise<ArticleSummary> video = fetchArticleSummary("MorningstarVideo", securityId);

return Promise.sequence([morningstarAnalysis, morningstarCommentary,
morningstarVideo, thirdPartyNews]);

}

Error Handling/Anti-Corruption Layer

30

Our BFF Implementation

“But when the other side of the boundary starts to leak through, the translation layer
may take on a more defensive tone.” -- Eric Evans, Domain-Driven Design

g Treating failure as a First-Class Citizen

g Normalized Error-Handling

Error Handling/Anti-Corruption Layer: Failure as a First-Class
Citizen

31

Our BFF Implementation

The network is the computer. The network is a bag of angry cats.

g Custom, Web Service integration layer

/ Well-defined timeouts

/ Boilerplate error-handling for common scenarios

/ Non-”OK” HTTP status codes

/ Response format mismatches: expecting JSON but got HTML

/ Pluggable error-handling for edge cases

Error Handling/Anti-Corruption Layer: Normalized Error-
Handling

32

Our BFF Implementation

Normalizing data provider error states

g Newer Services:

HTTP/1.1 401 Unauthorized

g Legacy Services:

HTTP/1.1 200 OK

<errorMessage>It’s not OK</errorMessage>

g Something Else Entirely: Getting HTML when you wanted JSON

HTTP/1.1 303 See Other

Location: http://www.example.com/index.html

Error Handling/Anti-Corruption Layer: Normalized Error-
Handling

33

Our BFF Implementation

Normalizing data provider error states

g 206 Partial Content

g 400 Bad request

g 401 Unauthorized

g 404 Not found

g 503 Service unavailable

/ 502 Bad gateway

/ 504 Gateway timeout

g Use of custom headers to add levels of detail where necessary

g We never intentionally return 500 Internal server error

34

Lessons Learned

• BFF Service Reuse
• Buffer Against Change
• API Design

BFF Service Reuse

35

Lessons Learned

g Should we build new services/BFFs?

/ Apple receipt verification

/ A new app with some API reuse and some new integrations

g Reuse by other products?

/ Does the BFF grow into a Monolith?

/ Fork it & build it yourself?

Buffer Against Change

36

Lessons Learned

Handling data provider changes in a way that’s transparent to frontend apps.

g Managing transitions with data providers

/ ”Absorb” changes in the BFF instead of changes to several apps

/ Releases on our own schedule

g Helping client-side developers move faster

/ Building APIs with stub data

/ Client developers continue to work & real data just starts showing up one day

API Design

37

Lessons Learned

g Striking a balance between general-use & view-specific APIs

g We now have three different experiences that leverage the same, basic sets of APIs

g We wish we’d leveraged
hypermedia/HATEOAS more

/ URL-construction logic spread around
different apps

/ Where we have used it, we’ve seen the
value

g Can you have REST w/out HATEOAS?

/ Does it matter for a BFF?

38

https://twitter.com/awwright/status/501581832186380288

API Design: The Glory of REST
Lessons Learned

39

Q & A

