
1

Jamie Grier 
@jamiegrier 

 

data-artisans.com

Apache Flink:
The Latest and Greatest

http://data-artisans.com

2

Original creators of Apache
Flink®

Providers of the
dA Platform, a supported

Flink distribution

The Latest Features

▪ ProcessFunction API
▪ Queryable State API
▪ Excellent support for advanced applications that are:
▪ Flexible
▪ Stateful
▪ Event Driven
▪ Time Driven

The Latest Features - Quick Overview

▪ Rescalable State
▪ Async I/O Support
▪ Flexible Deployment Options
▪ Enhanced Security

Rescalable State

▪ Separates state parallelism from task
parallelism

▪ Enables autoscaling integrations while
maintaining stateful computations

▪ Handled efficiently via key groups

Rescalable State

Map Filter Window

State State State
Source Sink

State is partitioned by key

Rescalable State

Source Sink

Map Filter Window
State State State

Map Filter Window
State State State

State is partitioned by key

Rescalable State

Source Sink

Map Filter Window
State State State

Map Filter Window
State State State

Map Filter Window
State State State

Map Filter Window
State State State

State is partitioned by key

Rescalable State

Source Sink

Map Filter Window
State State State

Map Filter Window
State State State

Map Filter Window
State State State

Map Filter Window
State State State

Map Filter Window
State State State

Map Filter Window
State State State

Map Filter Window
State State State

Map Filter Window
State State State

State is partitioned by key

Flexible Deployment Options

▪ YARN
▪ Mesos
▪ Docker Swarm
▪ Kubernetes

Flexible Deployment Options

▪ DC/OS
▪ Amazon EMR
▪ Google Dataproc

Asynchronous I/O Support

▪ Make aynchronous calls to external
services from streaming job

▪ Efficiently keeps configurable number of
asynchronous calls in flight

▪ Correctly handles failure scenarios -
restarts failed async calls, etc

Asynchronous I/O Support

Async
I/O

User
Code

Asynchronous I/O Support

Little’s Law:

throughput = occupancy / latency

Asynchronous I/O Support

a
b
c
d

b
c
d

x

a

a
b

b

a

Sync. I/O Async. I/O

database database

sendRequest(x) x receiveResponse(x) wait

Asynchronous I/O Support

Asynchronous I/O Support
// create the original stream
val stream: DataStream[String] = ...

// apply the async I/O transformation
val resultStream: DataStream[(String, String)] =

 AsyncDataStream.unorderedWait(
 input = stream,
 asyncFunction = new AsyncDatabaseRequest(),
 timeout = 1000,
 timeUnit = TimeUnit.MILLISECONDS,
 concurrentRequests = 100)

Asynchronous I/O Support
class AsyncDatabaseRequest extends AsyncFunction[String, (String, String)] {

 override def asyncInvoke(str: String, asyncCollector: AsyncCollector[(String, String)]): Unit = {

 // issue the asynchronous request, receive a future for the result
 val resultFuture: Future[String] = client.query(str)

 // set the callback to be executed once the request by the client is complete
 // the callback simply forwards the result to the collector
 resultFuture.onSuccess {
 case result: String => asyncCollector.collect(Iterable((str, result)));
 }
 }
}

Enhanced Security

▪ SSL
▪ Kerberos
▪ Kafka
▪ Zookeeper
▪ Hadoop

Advanced Event-Driven Applications

▪ ProcessFunction API
▪ Queryable State API
▪ Excellent support for advanced applications that are:
▪ Flexible
▪ Stateful
▪ Event Driven
▪ Time Driven

Example: FlinkTrade
▪ Overall Requirements:

▪ Consume “starting position” and “quote” streams
▪ Process complex, time-oriented, trading rules
▪ Trade out of positions to our advantage if possible
▪ Provide a dashboard of currently held positions to traders and asset managers

▪ Complex Rules:
▪ We only make trades where the Bid Price is above our current Ask Price
▪ When a trade is made we increase our Ask Price — looking to optimize our profits
▪ Positions have a set time-to-live until we try to trade out of them more aggressively

by decreasing the Ask Price over time

Example: FlinkTrade

Quotes

Starting
Positions

Trading
Engine Trades

Positions

SYMBOL SHARES BUY PRICE ASK PRICE LAST
TRADE
PRICE

Profit

AAPL 10,000 140.40 140.50 140.40 $10,921.00

GOOG 20,000 846.81 846.91 846.81 $12,021.00

TWTR 8,000 15.12 15.22 15.12 $4,032.00

● Event Driven Processing
● Complex Trading Rules
● Time Based Logic

Trader Dashboard

Example: FlinkTrade
Quotes

Starting
Positions

Trades

Trading
Engine

Positions

Trading
Engine

Positions

Trading
Engine

Positions

Trading
Engine

Positions

Trading
Engine

Positions

Trading
Engine

Positions

Trading
Engine

Positions

Trading
Engine

Positions

Trading
Engine

Positions

Trading
Engine

Positions

Trading
Engine

Positions

Trading
Engine

Positions

SYMBOL SHARES BUY PRICE ASK PRICE LAST
TRADE
PRICE

Profit

AAPL 10,000 140.40 140.50 140.40 $10,921.00

GOOG 20,000 846.81 846.91 846.81 $12,021.00

TWTR 8,000 15.12 15.22 15.12 $4,032.00

Example: FlinkTrade

Let’s look at
the code

We are hiring!

data-artisans.com/careers
@jamiegrier
@ApacheFlink
@dataArtisans

