

The Microservices
journey from a startup

perspective

Susanne Kaiser
CTO

@suksr

Just Software
@JustSocialApps

Each journey is different

Large organization You as a startup

Resources perspective

The beginning … A monolith in every aspect

One team

One collaboration product

One
technology
stack

Single unit

After an evolving while …

Productivity suffered

Usability and UX suffered

New features
released slowly

JUST PAGE
Social Network

JUST CONNECT
Real-time collaboration

JUST DRIVE
Document Sharing

JUST TASKS
Task Management

Separate Collaboration Apps

Small, autonomous teams
with well-defined responsibilities

JUST PAGE
Social Network

JUST CONNECT
Real-time collaboration

JUST DRIVE
Document Sharing

JUST TASKS
Task Management

In the long run ...

Looks easy at first glance ...

Microservices come with complexity

Design for Failure
Monitoring Deployment

Debugging

Testing

Eventual consistency
Skillset is different

Authentication & Authorization

Development environment

Challenges of transformation

Transformation
takes longer than
anticipated

You still have to
take care of your

existing system

Core functionality
is hard to untangle

All involved parties need to
agree and to be on board

Our Motivation

● Product and organizational/culture driven
● Enabling autonomous teams

with well-defined responsibilities
● Develop and deploy independently

to release changes quickly

How to start?

?

?

? ?

Transformation process

Establish Microservices ecosystem

Identify candidates
Decompose candidates

Transformation process

Identify candidates

Key concepts of modelling Microservices

High cohesion within a service

Loose coupling between services

Identify Bounded Contexts

Well defined business function

Bounded Contexts = Collaboration Apps

Monolith

Transformation process

Decompose candidates

First approach as a co-existing service

JUST DRIVE

JUST DRIVE

JUST LIST

JUST CONNECT

JUST PAGE

DB Adapter

REST API

Web App

DB Adapter

Message
Broker

Monolith

Heavy undertake if you do all at once

More features

New UI

New data structure

Maintain & run
current system

Split in steps – e.g. top down

Split in steps – e.g. top down

DB Adapter

Web Client

Browser

Monolith

Split in steps – Step 1) Extracting Web App

Business Logic

DB Adapter

Web Client

Browser

Web Client Web AppMonolith

Split in steps – Step 2) Extracting Business Logic

Business Logic

DB Adapter

Web Client

Browser

Business Logic

DB Adapter

REST API

Web App

Monolith

Split in steps – Step 3) Extracting Data Storage

Business Logic

DB Adapter

Web Client

Browser

Business Logic

DB Adapter

REST API

Web App

Monolith

REST API

Message Broker

Which one first?

Easy to extract Changing
frequently

Different resource
requirements

Stop feeding the monolith

 Monolith

Transformation process

Establish Microservices ecosystem

Direct access over public internet problematic
MicroservicesMonolith

● Exposing internal API
● CORS required
● Multiple roundtrips
● Different clients have different needs

User Interface

Business Logic

Data Access Layer

Microservice Microservice

MicroserviceMicroservice

User Interface

API-Gateway provides simplified access for client

User Interface

Business Logic

Data Access Layer

User Interface

API Gateway

Microservice Microservice

MicroserviceMicroservice

Microservices ecosystem with ...

Spring Cloud & Netflix OSS

Security: Auth-Server with API-Gateway as Token
Relay

User Interface

Business Logic

Data Access Layer

Authorization Server
OAuth2

Microservice

MicroserviceMicroservice

User Interface

API Gateway

auth

Access Token Access Token

Access Token

OAuth2 Token Relay

Access Token

/check_token
/userinfo

Security: Auth-Server with API-Gateway as Token
Translation

Authorization Server
OAuth2

Microservice

MicroserviceMicroservice

User Interface

API Gateway

Access Token JWT Token

JWT Token

Token Translation

Access Token

JWT Token

JWT Token

Service-Discovery

Service DiscoveryService Discovery

Microservice Microservice

1.) Register 2.) Discover

3.) Connect

Service Discovery

Microservice 1 Microservice 2

1.) Register 2.) Discover

3.) Connect

@EnableEurekaServer

@EnableDiscoveryClient

Service-Discovery w/ Spring Cloud & Eureka
@Configuration
public class MyConfiguration {
 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

public class MicroserviceTwo {
 @Autowired
 private RestTemplate restTemplate;
 public String doOtherStuff() {
 String results =
 restTemplate
 .getForObject(
 "http://microservice-one/stuff",
 String.class);
 return results;
 }
}

service id

Client-side Loadbalancing

Service Instance 1

Service Instance 2

Service Instance 3

Dynamic client-side Loadbalancing w/ Ribbon

Load Balancer Ribbon

1.) Register 2.) Obtain server list

3.) Loadbalance

Service Discovery
 (Eureka)

Design for Failure

 Timeout-Handling

 Circuit Breakers
 Provide fallbacks

Design for Failure w/ Hystrix

Circuit Breaker

Monitors remote call

Fallback (e.g. cached values, default values)

Fallback (fail-silent) or Exception (fail-fast)

define

returns

Microservice 2

Microservice 1

Microservice 2

Microservice 1

Design for Failure w/ Hystrix

public class MicroserviceTwo {
 @Autowired
 private RestTemplate restTemplate;

 @HystrixCommand(fallbackMethod = "defaultValues")
 public String doOtherStuff() {
 String results =
 restTemplate
 .getForObject(
 "http://microservice-one/stuff",
 String.class);
 return results;
 }

 public String defaultValues() {
 ...
 }
}

@EnableCircuitBreaker
@Configuration
public class MyConfiguration {
 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

-Dsun.net.client.defaultConnectTimeout=TimeoutInMiliSec
-Dsun.net.client.defaultReadTimeout=TimeoutInMiliSec

Timeout Setting (e.g. startup params)

Monitors remote call

Fallback (e.g. cached values, default values)

define

Microservice 2
Microservice 1

Monitoring w/ Hystrix Dashboard & Turbine

Source: http://www.programering.com/a/MDN3gzNwATE.html

Current ecosystem so far ...

Auth Server
OAuth2

Microservice

MicroserviceMicroservice

User Interface

API Gateway

Microservice

Service Discovery

Monitoring
Dashboard

Circuit Breaker

Load Balancer

Auth Server
OAuth2

Microservice

MicroserviceMicroservice

User Interface

API Gateway

Microservice

Service Discovery

Monitoring
Dashboard

Configuration
Management

Logging Analyses
Dashboard

A lot to cover to establish a Microservices
ecosystem

Build process, CI/CD-pipeline, testing, development environment

Circuit Breaker

Load Balancer

Lessons learned
● Starting with decomposing big chunks frustrates
● Establishing Microservices ecosystem takes time and requires

different skills & tools
● No explicit infrastructure team slows down the process
● A holistic picture of target architecture helps to stay focussed
● It takes far longer than originally anticipated

Summary

Establish teams for Microservices & infrastructure

Start small & split in manageable steps

Transformation can be handled even with
limited resources

Define a target architecture

*) Quarter of Hamburg, famous for its soccer club & entertainment district :)

*

 … AND W/ MICROSERVISES !

THANK YOU!
Susanne Kaiser

CTO
@suksr

Just Software
@JustSocialApps

