
Programming across 
Paradigms
@AnjanaVakil

GOTO Chicago 2017



hi, I’m @AnjanaVakil!
The 
Recurse 
Center 

https://wiki.mozilla.org/Outreachy#Test-driven_Refactoring_of_Marionette.27s_Python_Test_Runner
https://www.gnome.org/outreachy/
https://www.recurse.com/
https://www.recurse.com/
https://www.recurse.com/
https://www.recurse.com/
https://www.recurse.com/
https://www.recurse.com/
https://www.recurse.com/


1978 ACM Turing Award Lecture



“I believe the best chance we have to 
improve the general practice of 
programming is to attend to our paradigms.”

Robert W. Floyd
“The paradigms of programming.”, 1979. p. 456



what is a 
paradigm?





a paradigm is a worldview





a paradigm is a model



a paradigm enables progress



“In learning a paradigm the scientist 
acquires theory, methods, and 
standards together, usually in an 
inextricable mixture.”

Thomas S. Kuhn
 The Structure of Scientific Revolutions, (2nd ed.) 1970. p. 109.



theory

what entities make up the universe 
how they behave and interact



methods & standards

which problems are worth solving
which solutions are legitimate



“All models are wrong”

George E. P. Box
"Robustness in the strategy of scientific model building", 1979, p. 202.



paradigm

anomaly

crisis

shift



Scenography of the Ptolemaic cosmography by  Loon, J. van (Johannes), ca. 1611–1686. via Wikimedia 



Scenographia Systematis Copernicani (The Copernican System), 1686. via Wikimedia 



Portrait of Sir Isaac Newton, English School, [c.1715-1720] via Wikimedia 



“Einstein in 1947” by Orren Jack Turner via Wikimedia 



what are some
major paradigms?



imperative
programming

follow my 
commands

in the order I 
give them

remember state



imperative
programming

“Clocks Gears Wallpaper” via Wallpoper 



C



object-oriented
programming

keep your state 
to yourself

receive my 
messages

respond as you 
see fit



object-oriented
programming

“Slide of the Week: Increased WBC, April 14, 2011” via Center for Genomic Pathology 



Python



functional
programming

mutable state is 
dangerous

pure functions 
are safe

data goes in
data comes out



functional
programming

“2012 Chevrolet Cruze on the production line at Lordstown Assembly in Lordstown, Ohio” via GM



Scheme (Lisp)



declarative
programming

these are the 
facts

this is what I 
want

I don’t care how 
you do it



declarative
programming

“Sudoku05” by Jelte (CC BY-SA 3.0) via Wikimedia 



SQL
SELECT isbn,
       title,
       price,
       price * 0.06 AS sales_tax
FROM   Book
WHERE  price > 100.00
ORDER BY title;



Prolog
parent_child(juan, ana).
parent_child(kim, ana).
parent_child(kim, mai).

sibling(X,Y) :- parent_child(Z,X), parent_child(Z,Y).

?- sibling(ana, mai).
Yes



https://www.info.ucl.ac.be/~pvr/paradigms.html 

https://www.info.ucl.ac.be/~pvr/paradigms.html
https://www.info.ucl.ac.be/~pvr/paradigms.html


what do they have
in common?



shared
mutable state



shared
mutable state



shared 
mutable state



shared 
mutable state



“I'm sorry that I long ago coined the 
term "objects" for this topic because it 
gets many people to focus on the lesser 
idea. The big idea is "messaging".”

Alan Kay
 Message to Smalltalk/Squeak mailing list, 1998



thing.do(some,stuff)



 recipient     message

thing.do(some,stuff)

                       method name     arguments                    



Ruby

thing.do(some,stuff)

thing.send(:do,some,stuff)



class Friend:
    def __init__(self, friends):
     self.friends = friends
def is_friend_of(self, name):

     return name in self.friends

buddy = Friend(['alan', 'alonzo'])
buddy.is_friend_of('guy')   # False



buddy.is_friend_of('guy')



buddy.is_friend_of('guy')

buddy.send(‘is_friend_of’, 'guy')



buddy.is_friend_of('guy')

buddy.send(‘is_friend_of’, 'guy')

buddy('is_friend_of', 'guy')



def Friend(friend_names):
def is_my_friend(name):
  return name in friend_names

  def instance(method, *args):
if method == 'is_friend_of':

      return is_my_friend(*args) 
  return instance

buddy = Friend(['alan', 'alonzo'])
buddy('is_friend_of','guy') # False



class Friend:
    def __init__(self, friends):
     self.friends = friends
def is_friend_of(self, name):

     return name in self.friends

buddy = Friend(['alan', 'alonzo'])
buddy.is_friend_of('guy')   # False



which paradigm is
the best?



“All models are wrong…

George E. P. Box
"Robustness in the strategy of scientific model building", 1979, p. 202.



“All models are wrong
but some are useful”

George E. P. Box
"Robustness in the strategy of scientific model building", 1979, p. 202.





Each paradigm supports a set of 
concepts that makes it the best 
for a certain kind of problem.

Peter Van Roy
“Programming paradigms for dummies: What every programmer should know”, 2009, p. 10.



“Is the model true?”
“Is the model illuminating and useful?”

George E. P. Box
"Robustness in the strategy of scientific model building", 1979, p. 202.



what can a paradigm
teach me?



be explicit
understand 
implementation



1 # global.py
2 for i in range(10**8):
3     i

time: 9.185s

1 # in_fn.py
2 def run_loop():
3     for i in range(10**8):
4         i
5 run_loop()

time: 5.738s

Adapted from A. Vakil, “Exploring Python Bytecode”, 2015. https://youtu.be/GNPKBICTF2w 



1 # global.py
2 for i in range(10**8):
3     i

time: 9.185s

2  0 SETUP_LOOP   24 (to 27)
   … 
   16 STORE_NAME  1 (i)
3  19 LOAD_NAME   1 (i)
   … 

1 # in_fn.py
2 def run_loop():
3     for i in range(10**8):
4         i
5 run_loop()

time: 5.738s

3  0 SETUP_LOOP   24 (to 27)
   …
   16 STORE_FAST  0 (i) 
4  19 LOAD_FAST   0 (i)

…

Adapted from A. Vakil, “Exploring Python Bytecode”, 2015. https://youtu.be/GNPKBICTF2w 



be abstract
understand 
domain



Embedded DSL in Java
cal = new Calendar(); 
cal.event("GOTO Chicago")
 .on(2017, 5, 2) 
 .from("09:00")
 .to("17:00")
 .at("Swissôtel");

Adapted from M. Fowler & R. Parsons, Domain Specific Languages, 2011, p. 345.



encapsulate
communicate



Context-aware API in F#
module MyApi =
  let fnA dep1 dep2 dep3 arg1 = doAWith dep1 dep2 dep3 arg1
  let fnB dep1 dep2 dep3 arg2 = doBWith dep1 dep2 dep3 arg2

type MyParametricApi(dep1, dep2, dep3) =
  member __.FnA arg1 = doAWith dep1 dep2 dep3 arg1
  member __.FnB arg2 = doBWith dep1 dep2 dep3 arg2

Adapted from E. Tsarpalis, “Why OOP Matters (in F#)”, 2017.



specialize
transform data



Adapted from J. Kerr, “Why Functional Matters: Your white board will never be the same”, 2012.



Adapted from J. Kerr, “Why Functional Matters: Your white board will never be the same”, 2012.



no paradigm is best absolutely
each is best for a certain case



“If the advancement of the general art of 
programming requires the continuing 
invention and elaboration of paradigms, ...

Robert W. Floyd
“The paradigms of programming.”, 1979. p. 456



“If the advancement of the general art of 
programming requires the continuing 
invention and elaboration of paradigms, 
advancement of the art of the individual 
programmer requires that [t]he[y] expand 
[their] repertory of paradigms.”

Robert W. Floyd
“The paradigms of programming.”, 1979. p. 456



learn new paradigms
try multi-paradigm languages



what’s the 
point?



paradigms enable programming



paradigms define programming



don’t fight your paradigm,
embrace it 



be open to shift



attend to your paradigms



David Albert, Darius Bacon, Julia Evans
& the Recurse Center

GOTO Chicago organizers

thank you!
@AnjanaVakil



References & further reading/watching
Box, G. E. P. (1979), "Robustness in the strategy of scientific model building", in Launer, R. L.; Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201–236.

Floyd, R. W. (1979). “The paradigms of programming.” Commun. ACM 22, 8, 455-460.

Fowler, Martin, with Parsons, Rebecca. (2011). Domain Specific Languages. Addison-Wesley.

Kay, Alan (1998). Message to Smalltalk/Squeak mailing list. wiki.c2.com/?AlanKayOnMessaging 

Kerr, Jessica (2012). “Why Functional Matters: Your white board will never be the same”. blog.jessitron.com/2012/06/why-functional-matters-your-white-board.html 

Kerr, Jessica (2014). “Functional Principles for Object-Oriented Development”, GOTO Chicago. https://youtu.be/GpXsQ-NIKXY 

Kuhn, Thomas S. (1970). The Structure of Scientific Revolutions. (2nd ed.). University of Chicago Press.

Tsarpalis, Eirik. (2017). “Why OO matters (in F#)”. https://eiriktsarpalis.wordpress.com/2017/03/20/why-oo-matters-in-f/

Van Roy, Peter. (2009). “Programming paradigms for dummies: What every programmer should know.” In New computational paradigms for computer music, p. 104.

Williams, Ashley. (2015). “If you wish to learn ES6/2015 from scratch, you must first invent the universe”, JSConf. https://youtu.be/DN4yLZB1vUQ


