Programming across
Paradigms

@AnjanaVakil

GOTO Chicago 2017

hi, I'm @AnjanaVakil!

HE
Th
U h E r Ref:u rse
S Center

Research
||IIII'TECH

SPEAKERS

https://wiki.mozilla.org/Outreachy#Test-driven_Refactoring_of_Marionette.27s_Python_Test_Runner
https://www.gnome.org/outreachy/
https://www.recurse.com/
https://www.recurse.com/
https://www.recurse.com/
https://www.recurse.com/
https://www.recurse.com/
https://www.recurse.com/
https://www.recurse.com/

The Paradigms of Programming

Robert W. Floyd
Stanford University

Paradigm(pa-radim, —daim)...[a. F. paradigme, ad.
L. paradigma, a. Gr. mapadeype pattern, example, f.
wapadewrvs par o exhibit beside, show side by side. . .|
1. A pattern, exemplar, example.
1752 J. Gill Trinity v. 91
The archetype, paradigm, exemplar, and idea,
according to which all things were made.
From the Oxford English Dictionary.

Today I want to talk about the paradigms of pro-
gramming, how they affect our success as designers of
computer programs, how they should be taught, and how
they should be embodied in our programming languages.

A familiar example of a paradigm of programming
is the technique of structured programming, which ap-
pears to be the dominant paradigm in most current
treatments of programming methodology. Structured
programming, as formulated by Dijkstra [6], Wirth [27,
29], and Parnas [21], among others, consists of two
phases.

In the first phase, that of top-down design, or stepwise
refinement, the problem is decomposed into a very small
number of simpler subproblems. In programming the
solution of simultaneous linear cquatiuns. say, the first
level of decomposition would be into a stage of triangu-
larizing the equations and a following stage of back-
substitution in the triangularized system. This gradual
decomposition is continued until the subproblems that
arise are simple enough to cope with directly. In the
simultaneous equation example, the back substitution
process would be further decomposed as a backwards
iteration of a process which finds and stores the value of
the ith variable from the ith equation. Yet further decom-
position would yield a fully detailed algorithm.

1978 ACM Turing Award Lecture

“| believe the best chance we have to
improve the general practice of
programming is to

Robert W. Floyd

»
t

“The paradigms of programming.”, 1979. p. 456

what is a
paradigm?

THOMAS 5. KUHN
THE

STRUCTURE OF

SCIENTIFIC
REVOLUTIONS

A BRILUANT, ORIGINAL AMNALYSIS OF THE
MNATURE CALISES, AND CONSECHIENCES
OF REVOLUTIONS [N BASIC SCIENTIFIC CONCEFTS

P TLE b el

a paradigm is a

a paradigm is a

a paradigm enables

“In learning a paradigm the scientist
acquires
together, usually in an

inextricable mixture.”
Thomas S. Kuhn

The Structure of Scientific Revolutions, (2nd ed.) 1970. p. 109.

what entities make up the universe
how they behave and interact

&

which problems are worth solving
which solutions are legitimate

“All models are

George E. P. Box

"Robustness in the strategy of scientific model building", 1979, p. 202.

CrisIS

Scenography of the Ptolemaic cosmography by Loon, J. van (Johannes), ca. 1611-1686. via Wikimedia

Scenographia Systematis Copernicani (The Copernican System), 1686. via Wikimedia

“"Portrait of Sir.Isaac Newton, English School, [¢/1715-1720] via Wikimedia

“Einsteintingl 947” by Orren Jack Turner via Wikimedia

what are some
major paradigms?

Imperative
programming

follow my
commands

in the order I

give them

remember state

imperative
programming

5) | https://github.com/python/cpython/blob/master/Parser/node.c

static int
fancy_roundup(int n)

{

int result = 256;
assert(n > 128);

while (result < n) {
result <<= 1;

if (result <= 0)
return -1;

}

return result;

object-oriented
programming

keep your state
to yourself

receive my
messages

respond as you
see fit

object-oriented
programming .

011” via Center for Genomic Patholegy

1 5} | https://github.com/python/cpython/blob/master/Lib/urllib/parse. py

class DefragResult(_DefragResultBase, _ResultMixinStr):

__Sslots___ =
def geturl(self):
if self.fragment:
return self.url + '#' + self.fragment
else:
return self.url

functional
programming

mutable state 1s
dangerous

pure functions
are safe

data goes 1n
data comes out

aRERT L 2 H, 4

e

functional
programming

—— ——
ion line at Lordsto

Scheme (Lisp)

(define map
(lambda ()
(if (null? xs)
¢
(cons (f (car xs)) (map f (cdr xs))))))

these are the
facts

this 1s what I
want

declaratlvg I don’t care how
programming you do it

3
k=l
9]
S
=
=
8
>
5]
3}
<
®
>
m
Q
S)
. ..e.
o
-
>
o
o
(=}
]
=
[<]
°
=]
. HS

declarative

programming

SOL

isbn,
title,
price,
price % sales_tax
Book
price >
title;

Prolog

S
.
N/

(X)Y) . (Z)X)) (ZyY)°

Yes

Data structures only

+ unification
(equality)

record

Descriptive

declarative
programming
XML,
S—expression

+ procedure

First—order

TR S e T
'
i
|
|
|

https://www.info.ucl.ac.be/~pvr/paradigms.html

The principal programming paradigms

""More is not better (or worse) than less, just different."

v1.08 © 2008 by Peter Van Roy

functional
programming

+ closure

Functional [

Scheme, ML

+ name

+ cell (state) Imperative
programming

Imperative
search
programming

SNOBOL, Icon, Prolog

Pascal, C

+ search

Nondet. state

i
. ! (unforgeable constant)
+ continuation O ' . T + cell
E— i + ce + port
Continuation ! functional . imperative p h) (state) + closure
programming ! : i : (channe, S al
+ search " T, ! programming | programming B Sequenti
, , Scheme, ' Haskel,LML,E | CLU, OCaml, Oz alitios: A object-oriented
Relational & logic + by—need + thread : - programming
RIS RE ST synchron. + single assign + nondeterministic + port E in one vat Stateful
Prolog, SQL Lazy N % choice | (channel) + thread functional
embeddings functional dataflow 3 Nonmonotonic E Multi—agent Multi-agent progr
+ solver programming programming ! dataflow ! dataflow programming Java, OCaml
Constraint (logic) Declarative ; PLOSTAIMININS: : RroSEmming: M. passing + thread
programming concurrent ! Concurrent logic ' Oz, Alice, AKL T, o
CLP, ILOG Solver PIOSAIIINS | programmin g ' programming object—oriented
+ thread Pipes, MapReduce Oz, Alice, Curry, Excel, Erlang, AKL programming
+ thread + by—need ! AKL, FGHC, FCP B
Concurrent + sinel ; ¢ hronizabi i ? + Tocal'cell Shared—state
constraint singie assignmen Syncironization ! + synch. on partial termination gcas ce concurrent
B Lazy i ; : | Active object programming
programmin | Functional reactive ; :
LIFE, AKL o . |_programming (FRP) | ! programming Smalltalk, Oz,
? . PIOSTAMIING ! Wik v chionons I Object—capability Java, Alice
+ by—need synchronization L : X > ! -
= " . laz}t,' | programming) programming + log
azy concurren eclarative ! :
- — : FrTime, SL. CSP, Occ?m, Software
programming programming | + instantaneous computation E, Oz, Alice, transactional
Oz, Alice, Curr 0Oz, Alice, Curr [s hi pubilish/subseribe, e el
; ong synchronous § n
s s ¥ s s y : prggr};mming tuple space (Linda) SQL embeddings
Logic and . | Esterel, Lustre, Signal Dataflow and
m"‘itminm Functional : ’ B it Message passing Shared state
|

More declarative

S
Unnamed state (seq. or conc.)
l

\
I
|
|
|
I
|
! message passing
|
|
|
|
|
|

———
Named state
]

1 #— Less declarative

https://www.info.ucl.ac.be/~pvr/paradigms.html
https://www.info.ucl.ac.be/~pvr/paradigms.html

what do they have
In common?

shared

ab)
-
(9.
e
D
S
i)
(9]
e
=

aRERT L 2 H, 4

e

shared

shared
mutable state

“I"'m sorry that | long ago coined the
term for this topic because it
gets many people to focus on the Iesser
idea. The big idea is

Message to Smalltalk/Squeak mailing list, 1998

thing.do(some,stuff)

recipient message
l | : |
thing.do(some,stuff)

} v
method name arguments

Ruby

thing.do(some,stuff)

thing.send(:do,some,stuff)

class Friend:
def __init__(self, friends):
self.friends = friends
def is_friend_of(self, name):
return name in self.friends

buddy = Friend(['alan', 'alonzo'])
.is_friend_of('guy') # False

buddy.is_friend_of('guy')

buddy.is_friend_of('guy')

buddy.send(¢is_friend_of’, 'guy')

buddy.is_friend_of('guy')
buddy.send(¢is_friend_of’, 'guy')

buddy ('"is_friend_of', 'guy')

def Friend(friend_names):
def is_my_friend(name):
return name in friend _names
def instance(method, *args):
if method == 'is_friend of':
return is_my_friend(*xargs)
return instance

buddy = Friend(['alan', 'alonzo'])
('is_friend_of','guy') # False

class Friend:
def __init__(self, friends):
self.friends = friends
def is_friend_of(self, name):
return name in self.friends

buddy = Friend(['alan', 'alonzo'])
.is_friend_of('guy') # False

which paradigm is

the best?

“All models are wrong...

George E. P. Box

"Robustness in the strategy of scientific model building”, 1979, p. 202.

“All models are wrong
but some are "y

George E. P. Box

"Robustness in the strategy of scientific model building”, 1979, p. 202.

Each paradigm supports a set of
that makes it the best
for a certain kind of

Peter Van Roy

“Programming paradigms for dummies: What every programmer should know”, 2009, p. 10.

HI |I H IEItI,"E? b
“Is the model and ?7

George E. P. Box

"Robustness in the strategy of scientific model building", 1979, p. 202.

what can a paradigm
teach me?

be explicit
understand
implementation

1 # global.py 1 # in_fn.py

2 for i in range(10**8): 2 def run_loop():

3 i 3 for i in range(10**8):
4 i
5 run_loop()

time: 9.185s time: 5.738s

Adapted from A. Vakil, "Exploring Python Bytecode”, 2015. https://youtu.be/GNPKBICTF2w

global.py # in_fn.py
for i in range(10**8): def run_loop():
i for i in range(10**8):
i
run_loop()

time: time:
2 © SETUP_LOOP 24 (to 27) 3 © SETUP_LOOP 24 (to 27)

16 STORE_NAME 1 (i) 16 STORE_FAST © (i)
3 19 LOAD NAME 1 (i) 4 19 LOAD FAST © (i)

Adapted from A. Vakil, "Exploring Python Bytecode”, 2015. https://youtu.be/GNPKBICTF2w

be abstract

understand
domain

Embedded DSL in Java

cal = new Calendar();

cal.event ("GOTO Chicago")
.on(2017, 5, 2)
.from("09:00")
.to("17:00M)
.at("Swissotel");

Adapted from M. Fowler & R. Parsons, Domain Specific Languages, 2011, p. 345.

encapsulate
communicate

Context-aware APl in F#f

module MyApi =
let fnA depl dep2 dep3 argl = doAWith depl dep2 dep3 argl
let fnB depl dep2 dep3 arg2 doBWith depl dep2 dep3 arg2

type MyParametricApi(depl, dep2, dep3) =
member __.FnA argl = doAWith depl dep2 dep3 argl
member __.FnB arg2 = doBWith depl dep2 dep3 arg2

Adapted from E. Tsarpalis, "Why O0OP Matters (in F#)", 2017.

specialize
transform data

get unreconciled dispensations

——oldest first
get settled deposits

(that aren't all used)

> for each dispensation

try to match with a deposit

no deposit available

mark deposit used

mark donation reconciled

commit

Adapted from J. Kerr, "Why Functional Matters: Your white board will never be the same”, 2012.

get unreconciled dispensations

L

get settled deposits
(that aren't all used)

N

or each dispensation

dispensations

deposit
&.———-ofdes irst e ki

unused unreconciled

oldest first

oldest first

N7 < —

depositﬁ\ /ﬂéensaticm list

try to maNth ad;éit
\ XI -
| pair

no deposit available |

|
N (deposit, dispensation, amount) list
1

ark deposit used

N

y
mark donation reconciled

Nz

L
|
— 7

\I/ mark dispensation
g reconciled
commit ~

Adapted Tro v ONdl Vialle () G 004l ever be the same’, 20

no paradigm is absolutely
each is best for a

“If the advancement of the art of
programming requires the continuing
of paradigms, ...

Robert W. Floyd

“The paradigms of programming.”, 1979.p. 456

“If the advancement of the art of
programming requires the continuing
of paradigms,
advancement of the art of the
programmer requires that [t]he[y] expand
| their] of paradigms.”
RobertW Floyd

7, 1979.p. 456

learn paradigms
try languages

what's the
point?

paradigms programming

paradigms programming

don't fight your paradigm,
it

be open to

to your paradigms

David Albert, Darius Bacon, Julia Evans
& the Recurse Center

GOTO Chicago organizers

thank you!

@AnjanaVakil

References & further reading/watching

Box, G. E. P. (1979), "Robustness in the strategy of scientific model building", in Launer, R. L; Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201-236.
Floyd, R. W. (1979). “The paradigms of programming.” Commun. ACM 22, 8, 455-460.
Fowler, Martin, with Parsons, Rebecca. (2011). Domain Specific Languages. Addison-Wesley.

Kay, Alan (1998). Message to Smalltalk/Squeak mailing list. wiki.c2.com/?AlanKayOnMessaging

Kerr, Jessica (2012). “Why Functional Matters: Your white board will never be the same”. blog.jessitron.com/2012/06/why-functional-matters-vour-white-hoard.htmi

Kerr, Jessica (2014). “Functional Principles for Object-Oriented Development”, GOTO Chicago. https://voutu.be/GpXsO-NIKXY

Kuhn, Thomas S. (1970). The Structure of Scientific Revolutions. (2nd ed.). University of Chicago Press.

Tsarpalis, Eirik. (2017). “Why 00 matters (in F#)". https://eiriktsarpalis.wordpress.com/2017/03/20/why-o0-matters-in-f/

Van Roy, Peter. (2009). “Programming paradigms for dummies: What every programmer should know.” In New computational paradigms for computer music, p. 104.

Williams, Ashley. (2015). “If you wish to learn ES6/2015 from scratch, you must first invent the universe”, JSConf. https://voutu.be/DN4yL/BTvU0)

