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Background
• VP Engineering at Stitch Fix

o Revolutionizing retail by combining “Art and Science”

• Consulting “CTO as a service”
o Helping companies scale their organizations and technology

• Director of Engineering for Google App Engine
o World’s largest Platform-as-a-Service

• Chief Engineer at eBay
o Multiple generations of eBay’s infrastructure
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Combining Art and 
[Data] Science

• 1:1 Ratio of Data Science to Engineering
o >70 software engineers
o >70 data scientists and algorithm developers
o Unique in our industry?

• Apply intelligence to *every* part of the business
o Buying
o Inventory management
o Logistics optimization
o Styling recommendations
o Demand prediction

• Humans and machines augmenting each other



Styling at 
Stitch Fix

Personal styling

Inventory
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How do we work, and why 
does it work?
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Small
“Service” Teams

• Teams Aligned to Domains
o Clear, well-defined area of responsibility
o Single service or set of related services

• Cross-functional Teams
o Team has inside it all skill sets needed to do the job

• Depend on other teams for supporting services, 
libraries, and tools
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Test-Driven 
Development

• Tests help you go faster
o Tests “have your back”
o Development velocity

• Tests make better code
o Confidence to break things
o Confidence to refactor 

• Tests make better systems
o Catch bugs earlier, fail faster



Test-Driven 
Development

• “Don’t have time to do it right” ?
o WRONG J – Don’t have time to do it twice (!)

• Do it right (enough) the first time
o The more constrained you are on time and resources, the more important 

it is to build solid features
o Right != perfect

• è Basically no bug tracking system (!)
o Bugs are fixed as they come up
o Backlog contains features we want to build
o Backlog contains technical debt we want to repay



Continuous
Delivery

• Most applications deployed multiple times per day

• More solid systems
o Release smaller units of work
o Faster to repair, easier to diagnose
o Smaller changes to roll back or roll forward

• Enables experimentation
o Small experiments and rapid iteration are cheap
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DevOps
• End-to-end Ownership

o Team owns service from design to deployment to retirement

• Responsible for 
o Features
o Quality
o Performance
o Operations
o Maintenance

• “You build it, you run it!”
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Architecture 
Evolution

• eBay 
• 5th generation today
• Monolithic Perl à Monolithic C++ à Java à microservices

• Twitter
• 3rd generation today
• Monolithic Rails à JS / Rails / Scala à microservices

• Amazon
• Nth generation today
• Monolithic Perl / C++ à Java / Scala à microservices



Microservices

• Single-purpose
• Simple, well-defined interface
• Modular and independent

A
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Microservices are nothing 
more than SOA done properly.

-- me



Microservices

• Single-purpose
• Simple, well-defined interface
• Modular and independent
• Isolated persistence (!)

A

C D E
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Microservice
Persistence

• Approach 1:  Operate your own data store
o Store to your own instance(s) of {Postgres, MySQL, etc.}, owned and 

operated by the service team

• Approach 2:  Use a persistence service
o Store to your own table(s) in {Dynamo, RDS, Spanner, etc.}, operated as a 

service by another team or by a third-party provider
o Isolated from all other users of the service

• è Only external access to data store is through 
published service interface



Maintaining 
Interface Stability

• Backward / forward compatibility of interfaces
o Can *never* break your clients’ code 

• Semantic versioning (major.minor.patch)
o Often multiple interface versions
o Sometimes multiple deployments

• Explicit deprecation policy 
o Strong incentive to wean customers off old versions (!)



Extracting 
Microservices

• Problem:  Monolithic shared DB

• Clients
• Shipments
• Items
• Styles, SKUs
• Warehouses
• etc.

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service



Extracting 
Microservices

• Decouple applications / services from shared DB

• Clients
• Shipments
• Items
• Styles, SKUs
• Warehouses
• etc.

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service



Extracting 
Microservices

• Decouple applications / services from shared DB

Styling app Warehouse app
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Extracting 
Microservices

• Step 1:  Create a service

Styling app Warehouse app

core_item

core_sku

core_client

client-service



Extracting 
Microservices

• Step 2:  Applications use the service

Styling app Warehouse app

core_item

core_sku

core_client

client-service



Extracting 
Microservices

• Step 3:  Move data to private database

Styling app Warehouse app
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Extracting 
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• Step 4:  Rinse and Repeat
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Microservice Techniques:
Shared Data

• Problem
o Monolithic database makes it easy to leverage shared data
o Where does shared data go in a microservices world?

• Principle: Single System of Record
o Every piece of data is owned by a single service
o That service represents its canonical system of record
o Every other copy of that data is a read-only, non-authoritative cache



Microservice Techniques:
Shared Data

• Approach 1: Synchronous Lookup
o Customer service owns customer data
o Order service calls customer service in real time

order-service

customer-service



Microservice Techniques:
Shared Data

• Approach 2: Async event + local cache
o Customer service owns customer data
o Customer service sends customer-updated event when customer 

changes
o Order service caches current customer information

order-servicecustomer-service



Microservice Techniques:
Shared Data

• Approach 3: Shared metadata library 
o Read-only metadata, basically immutable
o E.g., size schemas, colors, fabrics, US States, etc.

receiving-serviceitem-service

style-service



Events as
First-Class Construct

• “A significant change in state”
o Statement that some interesting thing occurred
o 0 | 1 | N consumers subscribe to the event, typically asynchronously

• Fourth fundamental building block
o Presentation è interface / interaction
o Application è stateless business logic
o Persistence è database
o State changes è events

• Events represent how the real world works
o Finance, software development process, any “workflow”



Microservices
and Events

• Events are a first-class part of the interface

• A service interface includes
o Synchronous request-response (REST, gRPC, etc)
o Events the service produces
o Events the service consumes
o Bulk reads and writes (ETL)

• The interface includes any mechanism for getting 
data in or out of the service (!)



Microservice Techniques:
Joins

• Problem
o Monolithic database makes joins very easy
o Splitting the data into separate services makes joins very hard



Microservice Techniques:
Joins

• Approach 1: Service that “Materializes the View”
o Listen to events from item-service, events from order-service
o Maintain denormalized join of items and orders together in local storage

• Best for high cardinality A and high cardinality B 
(M:N join)

Items Orders

item-feedback-serviceitem-service
order-service



Microservice Techniques:
Joins

• Many common systems do this
o Most NoSQL approaches
o “Materialized view” in database systems
o Search engines
o Analytic systems
o Log aggregators



Microservice Techniques:
Joins

• Approach 2: Join in Application / Client
o Get a single customer from customer-service
o Query matching orders for that customer from order-service

• Best for single A, multiple Bs (1:N join)

A
B

order-history-page

customer-service order-service



Microservice Techniques:
Joins

• Many common systems do this
o Web application “mashup”



Microservice Techniques:
Workflows and Sagas

• Problem
o Monolithic database makes transactions across multiple entities easy
o Splitting data across services makes transactions very hard



Microservice Techniques:
Workflows and Sagas

• Transaction è Saga
o Model the transaction as a state machine of atomic events

• Reimplement as a workflow

• Roll back by applying compensating operations in 
reverse

A B C D

A B C D



Microservice Techniques:
Workflows and Sagas

• Many common systems do this
o Payment processing flow
o Most approval workflows



Microservice Techniques:
Workflows and Sagas

• Ideal use for Functions as a Service (“Serverless”)
o Very lightweight logic
o Stateless
o Triggered by an event

A B C D

A B C D
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Thanks!
• Stitch Fix is hiring!

o www.stitchfix.com/careers
o Application development, Platform engineering, 

Data Science
o Based in San Francisco
o More than half remote, all across US

• Please contact me
o @randyshoup
o linkedin.com/in/randyshoup


