
Effective Microservices
in a Data-centric World

Randy Shoup
@randyshoup

linkedin.com/in/randyshoup

Background
• VP Engineering at Stitch Fix

o Revolutionizing retail by combining “Art and Science”

• Consulting “CTO as a service”
o Helping companies scale their organizations and technology

• Director of Engineering for Google App Engine
o World’s largest Platform-as-a-Service

• Chief Engineer at eBay
o Multiple generations of eBay’s infrastructure

Stitch Fix

Stitch Fix

Stitch Fix

Stitch Fix

Combining Art and
[Data] Science

• 1:1 Ratio of Data Science to Engineering
o >70 software engineers
o >70 data scientists and algorithm developers
o Unique in our industry?

• Apply intelligence to *every* part of the business
o Buying
o Inventory management
o Logistics optimization
o Styling recommendations
o Demand prediction

• Humans and machines augmenting each other

Styling at
Stitch Fix

Personal styling

Inventory

Personalized
Recommendations

Inventory Algorithmic
recommendations

Machine learning

Expert Human
Curation

Human
curation

Algorithmic
recommendations

How do we work, and why
does it work?

Modern Software
Development

Practices

CultureTechnology

Organization

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

Small
“Service” Teams

• Teams Aligned to Domains
o Clear, well-defined area of responsibility
o Single service or set of related services

• Cross-functional Teams
o Team has inside it all skill sets needed to do the job

• Depend on other teams for supporting services,
libraries, and tools

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

Test-Driven
Development

• Tests help you go faster
o Tests “have your back”
o Development velocity

• Tests make better code
o Confidence to break things
o Confidence to refactor

• Tests make better systems
o Catch bugs earlier, fail faster

Test-Driven
Development

• “Don’t have time to do it right” ?
o WRONG J – Don’t have time to do it twice (!)

• Do it right (enough) the first time
o The more constrained you are on time and resources, the more important

it is to build solid features
o Right != perfect

• è Basically no bug tracking system (!)
o Bugs are fixed as they come up
o Backlog contains features we want to build
o Backlog contains technical debt we want to repay

Continuous
Delivery

• Most applications deployed multiple times per day

• More solid systems
o Release smaller units of work
o Faster to repair, easier to diagnose
o Smaller changes to roll back or roll forward

• Enables experimentation
o Small experiments and rapid iteration are cheap

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

DevOps
• End-to-end Ownership

o Team owns service from design to deployment to retirement

• Responsible for
o Features
o Quality
o Performance
o Operations
o Maintenance

• “You build it, you run it!”

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

Architecture
Evolution

• eBay
• 5th generation today
• Monolithic Perl à Monolithic C++ à Java à microservices

• Twitter
• 3rd generation today
• Monolithic Rails à JS / Rails / Scala à microservices

• Amazon
• Nth generation today
• Monolithic Perl / C++ à Java / Scala à microservices

Microservices

• Single-purpose
• Simple, well-defined interface
• Modular and independent

A

C D E

B

Microservices are nothing
more than SOA done properly.

-- me

Microservices

• Single-purpose
• Simple, well-defined interface
• Modular and independent
• Isolated persistence (!)

A

C D E

B

Microservice
Persistence

• Approach 1: Operate your own data store
o Store to your own instance(s) of {Postgres, MySQL, etc.}, owned and

operated by the service team

• Approach 2: Use a persistence service
o Store to your own table(s) in {Dynamo, RDS, Spanner, etc.}, operated as a

service by another team or by a third-party provider
o Isolated from all other users of the service

• è Only external access to data store is through
published service interface

Maintaining
Interface Stability

• Backward / forward compatibility of interfaces
o Can *never* break your clients’ code

• Semantic versioning (major.minor.patch)
o Often multiple interface versions
o Sometimes multiple deployments

• Explicit deprecation policy
o Strong incentive to wean customers off old versions (!)

Extracting
Microservices

• Problem: Monolithic shared DB

• Clients
• Shipments
• Items
• Styles, SKUs
• Warehouses
• etc.

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service

Extracting
Microservices

• Decouple applications / services from shared DB

• Clients
• Shipments
• Items
• Styles, SKUs
• Warehouses
• etc.

stitchfix.com Styling app Warehouse app Merch app

CS app Logistics app Payments service Profile service

Extracting
Microservices

• Decouple applications / services from shared DB

Styling app Warehouse app

core_item

core_sku

core_client

Extracting
Microservices

• Step 1: Create a service

Styling app Warehouse app

core_item

core_sku

core_client

client-service

Extracting
Microservices

• Step 2: Applications use the service

Styling app Warehouse app

core_item

core_sku

core_client

client-service

Extracting
Microservices

• Step 3: Move data to private database

Styling app Warehouse app

core_item

core_sku

client-service

core_client

Extracting
Microservices

• Step 4: Rinse and Repeat

Styling app Warehouse app

core_sku

client-service

core_client

item-service

core_item

Extracting
Microservices

• Step 4: Rinse and Repeat

Styling app Warehouse app

client-service

core_client

item-service

core_item

style-service

core_sku

Extracting
Microservices

• Step 4: Rinse and Repeat

Styling app Warehouse app

client-service

core_client

item-service

core_item

style-service

core_sku

Microservice Techniques:
Shared Data

• Problem
o Monolithic database makes it easy to leverage shared data
o Where does shared data go in a microservices world?

• Principle: Single System of Record
o Every piece of data is owned by a single service
o That service represents its canonical system of record
o Every other copy of that data is a read-only, non-authoritative cache

Microservice Techniques:
Shared Data

• Approach 1: Synchronous Lookup
o Customer service owns customer data
o Order service calls customer service in real time

order-service

customer-service

Microservice Techniques:
Shared Data

• Approach 2: Async event + local cache
o Customer service owns customer data
o Customer service sends customer-updated event when customer

changes
o Order service caches current customer information

order-servicecustomer-service

Microservice Techniques:
Shared Data

• Approach 3: Shared metadata library
o Read-only metadata, basically immutable
o E.g., size schemas, colors, fabrics, US States, etc.

receiving-serviceitem-service

style-service

Events as
First-Class Construct

• “A significant change in state”
o Statement that some interesting thing occurred
o 0 | 1 | N consumers subscribe to the event, typically asynchronously

• Fourth fundamental building block
o Presentation è interface / interaction
o Application è stateless business logic
o Persistence è database
o State changes è events

• Events represent how the real world works
o Finance, software development process, any “workflow”

Microservices
and Events

• Events are a first-class part of the interface

• A service interface includes
o Synchronous request-response (REST, gRPC, etc)
o Events the service produces
o Events the service consumes
o Bulk reads and writes (ETL)

• The interface includes any mechanism for getting
data in or out of the service (!)

Microservice Techniques:
Joins

• Problem
o Monolithic database makes joins very easy
o Splitting the data into separate services makes joins very hard

Microservice Techniques:
Joins

• Approach 1: Service that “Materializes the View”
o Listen to events from item-service, events from order-service
o Maintain denormalized join of items and orders together in local storage

• Best for high cardinality A and high cardinality B
(M:N join)

Items Orders

item-feedback-serviceitem-service
order-service

Microservice Techniques:
Joins

• Many common systems do this
o Most NoSQL approaches
o “Materialized view” in database systems
o Search engines
o Analytic systems
o Log aggregators

Microservice Techniques:
Joins

• Approach 2: Join in Application / Client
o Get a single customer from customer-service
o Query matching orders for that customer from order-service

• Best for single A, multiple Bs (1:N join)

A
B

order-history-page

customer-service order-service

Microservice Techniques:
Joins

• Many common systems do this
o Web application “mashup”

Microservice Techniques:
Workflows and Sagas

• Problem
o Monolithic database makes transactions across multiple entities easy
o Splitting data across services makes transactions very hard

Microservice Techniques:
Workflows and Sagas

• Transaction è Saga
o Model the transaction as a state machine of atomic events

• Reimplement as a workflow

• Roll back by applying compensating operations in
reverse

A B C D

A B C D

Microservice Techniques:
Workflows and Sagas

• Many common systems do this
o Payment processing flow
o Most approval workflows

Microservice Techniques:
Workflows and Sagas

• Ideal use for Functions as a Service (“Serverless”)
o Very lightweight logic
o Stateless
o Triggered by an event

A B C D

A B C D

ƛ

ƛ

ƛ

ƛ

ƛ

ƛ

ƛ

ƛ

Modern Software
Development

TDD and
Continuous

Delivery

DevOpsMicroservices

Small
Teams

Thanks!
• Stitch Fix is hiring!

o www.stitchfix.com/careers
o Application development, Platform engineering,

Data Science
o Based in San Francisco
o More than half remote, all across US

• Please contact me
o @randyshoup
o linkedin.com/in/randyshoup

