
When and how to explore: an
engineer’s guide

Julie Pitt (@yakticus)

http://twitter.com/yakticus

Chapter I
The Founding

Julie
Pitt

Greg
Orzell

Christian
Kaiser

Order of Magnitude Labs founding team

intelligent
machines

the
frontier

https://flickr.com/photo/13547802@N05/8907414305/

1. emerging
approaches

2. scale

3. profit

the business hypothesis

why prototype in Scala?

● functional
● immutable
● type system
● industrial scale libraries

prototype #1

● distributed, async neural net
● actor = “neuron”
●message passing between

neurons

Just because
you can do it
doesn’t mean
you should.

prototype
#2

● embarrassingly
simple

● immutable
classes

● pure functions
● single threadded

https://www.youtube.com/watch?v=ddCgUOJqE64

https://www.youtube.com/watch?v=ddCgUOJqE64
https://www.youtube.com/watch?v=ddCgUOJqE64

https://flickr.com/photo/13547802@N05/8907414305/

perception reality

Chapter II
Crossroads

exploitation exploration

value

http://www.fil.ion.ucl.ac.uk/~karl/Active%20inference%20and%20epistemic%20value.pdf

exploitation

explorationit works

why exploration is hard

Chapter III
(Re)learning to explore

engineering best practices

● building to spec
● shipping code
● operations
●minimizing tech

debt

I was optimizing for...

● formulating hypotheses
● ...testing them
● ...rejecting bad ones
● repeat!

I should have optimized for...

lessons learned about hypothesis
testing

1. facts can change
2. equip your laboratory

3. merge ideas, fork code

1. facts can change

http://www.arbesman.net/the-half-life-of-facts/

truth

facts

http://www.arbesman.net/the-half-life-of-facts/
http://www.arbesman.net/the-half-life-of-facts/

In order to grasp the
truth, one must let go
of many failed
hypotheses

experimental insight app

server

data
collection

framework

https://www.youtube.com/watch?v=PQuDD_EHM9I

experiments

https://www.youtube.com/watch?v=PQuDD_EHM9I
https://www.youtube.com/watch?v=PQuDD_EHM9I

low-tech compromise

experiments

The more you’ve
built, the harder it
is to admit you’re
wrong.

When being right
means adding
complexity, apply
Occam’s razor.

2. equip your laboratory

When all you
have is a
hammer,
everything looks
like a nail.

tools

hypotheses

experiments

● tools = knowledge index
○ unused tools != dead code

●make tools versatile
○ reuse across experiments

● don’t over-engineer
○ when in doubt, print to console

building your library of tools

● primitives = pure functions
● types define what’s possible
● types ensure tools used

correctly

types as instruction manual

●make tools accessible
●minimal setup
● distraction-free

workspace requirements

hierarchy of environments

http://www.lihaoyi.com/Ammonite/

type of test import
tools? type of environment our choice

quick & dirty
(<90 seconds)

✅ REPL Ammonite REPL
(Scala)

lightweight, reusable
(<60 minutes)

✅ script Scala scripts
(Ammonite)

ongoing, collaborative ✅
full-blown

project
SBT, Gradle build

system

http://www.lihaoyi.com/Ammonite/
http://www.lihaoyi.com/Ammonite/

3. merge ideas, fork code

ambiguity
means several
hypotheses
seem equally
plausible

requiring a
single
codebase
downplays
ambiguity

with a single
codebase,
discussions
center on
“how”

●hypotheses
○ divide & conquer

● tools
● requirements*
○ *as they become clear

what to share

Chapter IV
Exploration & Creativity

https://flickr.com/photo/9136641@N07/2177935073/

executioncreativity

https://flickr.com/photo/9136641@N07/2177935073/

test hypotheses
build tools

(execution mode)

formulate hypotheses

(creative mode)

perspiration inspiration

creativity

creativity can’t be managed

creativity doesn’t stick to a schedule

you can’t manufacture creativity...

...but you can cultivate it

cultivating creativity

nourishment
exercise

rest

Julie’s ideal creative mode day

distractionswalk outside

focus (green)
breaks (blue)

KTLO
(keeping the

lights on)
sleep

exercise (pomodoro technique)

● time-based, not outcome-based
● permission to rest
● avoid distraction
● daily quitting time

focus
25 minutes

break
5 minutes

https://www.coursera.org/learn/learning-how-to-learn

https://www.coursera.org/learn/learning-how-to-learn
https://www.coursera.org/learn/learning-how-to-learn

diffuse modefocused mode

https://www.coursera.org/learn/learning-how-to-learn

https://www.coursera.org/learn/learning-how-to-learn
https://www.coursera.org/learn/learning-how-to-learn

outdoor exercise
pops you into diffuse
mode, which can get
you unstuck.

exercise outside

short term memory
(high complexity)

sleep

insight
(low complexity)

rest

too much distraction creates a complexity
reduction bottleneck during sleep

limit distractions

nutrition

Chapter V
Conclusion

at the beginning, act like a beginner

● build the embarrassingly simple
version first

● just because you can do it doesn’t
mean you should

optimize for hypothesis testing

● facts can change
● equip your laboratory
● merge ideas, fork code

cultivate creativity

● creativity and execution are
modal

● creativity requires nutrition,
exercise and rest

https://flickr.com/photo/69793885@N00/7874464932/

