The do’s ana
don'ts of
error handling

Joe Armstrong

A system Is

fau

it It conti

t tolerant

nues working

even If something is
wrong

Work like this is never finished
its always in-progress

Hardware can fall
- relatively uncommon

Software can fall
- common

Overview

e Fault-tolerance cannot be achieved
using a single computer
- it might fail

 We have to use several computers
- concurrency
- parallel programming
- distributed programming
- physics
- engineering
- message passing is inevitable

* Programming languages should make
this easy doable

* How individual computers work Is
the smaller problem

 How the computers are interconnected
and the protocols used between the
computers is the significant problem

 We want the same way to program large
and small scale systems

Message passing
IS Inevitable

Message passing is the basis of
OOP

prototypes vs classes was: Re: Sun's HotSpot

Alan Kay alank at wdi.disney.com
Sat Oct 10 04:40:35 UTC 1998

» Previous message: prototypes vs classes was: Re: Sun's HotSpot
o Next message: prototypes vs classes
* Messages sorted by: [date] [thread] [subject] [author |

Folks -~

Just a gentle reminder that I took some pains at the last OOPSLA to try to
remind everyone that Smalltalk is not only NOT its syntax or the class
library, it is not even about classes. I'm sorry that I long ago coined the
term “"objects” for this topic because it gets many people to focus on the
lesser idea.

The big idea is "messaging” == that is what the kernal of Smalltalk/Squeak
is all about (and it's something that was never quite completed in our
Xerox PARC phase). The Japanese have a small word -- ma -- for "that which
is in between" -- perhaps the nearest English equivalent is "interstitial".
The key in making great and growable systems is much more to design how its
modules communicate rather than what their internal properties and
behaviors should be. Think of the internet -- to live, it (a) has to allow
many different kinds of ideas and realizations that are beyond any single
standard and (b) to allow varying degrees of safe interoperability between
these ideas.

If you focus on just messaging -- and realize that a good metasystem can
late bind the various 2nd level architectures used in objects -- then much
of the language-, UI-, and OS based discussions on this thread are really
quite moot. This was why I complained at the last OOPSLA that -- whereas at

And CSP

C.A.R.Hoare

Sequential
Processes

Calmiaw SERENS 0

Communicating

Crlang

Derived from Smalltalk and Prolog
(influenced by ideas from CSP)

Unifies ideas on concurrent
and functional programming

Follows laws of physics
(asynchronous messaging)

Designed for programming
fault-tolerant systems

Building fault-tolerant
software boils down to
detecting errors and doing
something when errors are
detected

Types of errors

Errors that can be detected at compile time
Errors that can be detected at run-time
Errors that can be inferred

Reproducible errors

Non-reproducible errors

Philosopny

* Find methods to prove SW correct at compile-time

e Assume software is incorrect and will fail at run time
then do something about it at run-time

Evidence for
SW tallure Is
all around us

Proving the selt-
consistency of small
orograms will not help

Why selt-consistency?

Proving things is difficult

* Prove the Collatz conjecture (also known as the
Ulam conjecture, Kakutani’s prolem, Thwaites
conjecture, Hasse’s algorithm or the Syracuse
problem)

SN+ 1

* |f Nis odd replace it by 3N+1

* |f Nis even replace it by N/2

The Collatz conjecture is:
This process will eventually reach the number 1,
for all starting values on N

"Mathematics may not be ready for such
problems”
Paul Erdss

Conclusion

 Some small things can be proved to be selt-
consistent

* Large assemblies of small things are impossible to
prove correct

Ti m e ‘ i n e Erlang model of

computation rejected.
Shared memory systems
rule the world

1980 - Rymdbolaget - first interest in Fault-tolerance - Viking Satellite

1985 - Ericsson - start working on “a replacement PLEX” - start thinking about errors - “errors
must be corrected somewhere else” “shared memory is evil” “pure message passing”

1986 - Erlang - unification of OO with FP

1998 - Several products in Erlang - Erlang is banned
1998 .. 2002 - Bluetail -> Alteon -> Nortel -> Fired
2002 - | move to SICS

2003 - Thesis

2004 - Back to Ericsson
Erlang model of

2015 - Put out to grass Compu{a[/'gn W/de/y
accepted and adopted
In many different languages

Incorrect
Software
IS not an option

Types of system

Highly reliable (nuclear power plant control, ‘b\@
air-traffic) - satellite (very expensive if they fail) \@% 6(5\@
. . \O ‘b\\
Reliable (driverless cars) (moderately expensive if QO 64
they fail. Kills people if they fail) @C\f\ (0(\
AN

\ .
Reliable (Annoys people if they fail) %) \QQ\\ ,
banks, telephone 0{{\ 6\0 (Q\
Dodgy - (Cross if they fail) 0‘5 Cﬁ%
Internet - HBO, Netflix &0@

Crap - (Very Cross if they fail)
Free Apps

How can we
make software that
WOrKs reasonably well
even It there are
errors in the software”

Making reliable
distributed systems
in the presence of
software errors

JOE ARMSTRONG

Doctoral Thesis
Stockholm, Sweden 2003

http://erlang.org/download/
armstrong_thesis_2003.pdf

http://erlang.org/download/

Requirements

R1 - Concurrency

R2 - Error encapsulation
R3 - Fault detection

R4 - Fault identification
R5 - Code upgrade

R6 - Stable storage

Source: Armstrong thesis 2003

The "method”

Detect all errors (and crash???)

If you can’t do what you want to do try to do
something simpler

Handle errors “remotely” (detect errors and ensure
that the system is put into a safe state defined by
an invariant)

|[dentity the “Error kernel”
(the part that must be correct)

Supervision trees

/.\A Note: nodes
© O f\ O

. supervisor

can be on different
machine

From: Erlang Programming
Cesarini & Thompson 2009

A akka in a few words:

® Toolkit for building scalable distributed / concurrent apps.
® High Performance Actor Model implementation
® ‘“share nothing” — messaging instead of sharing state
® millions of msgs, per actor, per second
® Supervision trees — built-in and mandatory
® Clustering and Http built-in

Akka is “Erlang supervision for
Java and Scala”

User-Defined OoTP Applications Java

-
Folsom | lager SAsL | 2 Kernel

Librar
_ i

Componen+9
Erlana Virtual Machine

Hardware/Opera’ring System

Source: Designing for Scalability with Erlang/OTP
Cesarini & Vinoski O'Reilly 2016

It WOrks

Ericsson smart phone data setup

WhatsApp

CouchDB (CERN - we found the higgs)

Cisco (netconf)

Spine?2 (NHS - uk - riak (basho) replaces Oracle)

RabbitMQ

e \What is an error ?

e How do we discover an error ?

e \What to do when we hit an error ?

What is an error”

* An undesirable property of a program
* Something that crashes a program

e A deviation between desired and observed
behaviour

Who finds the error?

* The program (run-time) finds the error
* The programmer finds the error

 The compiler finds the error

The run-time finds an error

o Ar

d

ithmetic errors
vide by zero, overflow, underflow, ...

° A

‘ray bounds violated

e System routine called with nonsense
arguments

o N

ull pointer

e Switch option not provisioned
® An incorrect value Is observed

What should the run-time do
when it finds an error?

e [gnore it (NO)
e Try to fix it (nO)
e Crash immediately (yes)

e Don't Make matters worse
e Assume somebody else
will fix the problem

What should the programmer do
when they don’t know what to do?

e |gnore it (noO)

e | 0git(yes)

e Try to fix it (possibly, but don’'t make matters
WOorse)

e Crash immediately (yes)

In sequential languages with single threads
crashing is not widely practised

What's the
big deal
about
concurrency?

A sequential program

A dead seqguential program

Nothing here

Several parallel processes

Several processes
where one process failed

Linked processes

Red process dies

Blue processes are sent

error messages

Why
concurrent?

-ault-tolerance
'S IMpossible
with one computer

AND

Scalable is
Impossible
with one computer *

* To more than the capacity of
the computer

AND

Security Is very
difficult
with one computer

AND

| want one way to program
Nnot two ways
one for local systems
the other for distributed systems
(rules out shared memory)

Detecting
Errors

Where do errors come from

e Arithmetic errors

* Unexpected inputs

* Wrong values

* Wrong assumptions about the environment
e Sequencing errors

e Concurrency errors

e Breaking laws of maths or physics

Arithmetic Errors

* silent and deadly errors - errors where the
program does not crash but delivers an
iIncorrect result

* NoISy errors - errors which cause the
program to crash

Silent Errors

e "quiet” NaN's
e arithmetic errors

e these make matters
worse

A nasty silent error

. 3-

http://www.military.com/video/space-technology/launch-

O WU ena 11;
L_M _DON_32 := TDB.T ENTIER 325 ((1.0/C_M LSB DON) *
LS5

G_| M INFO DERIVE(T ALG.E_pCWW)

if L M_DON_32 > 32767 then

P M DBRIVE(T ALG.E DON) := 16#7FFF4;
elsif L_M DON 32 < -32768 then

P_M_DERIVE (T_ALG.E_DON) := 16#80004;
else

P_M DERIVE (T_ALG.E_DON) := UC 165 EN IGNS(

TDB.T_ENTIER 16S(L M oou +32)) 12

end if;

P_M_DERIVE(T_ALG.E_DOE) := UC_16S_EN 16NS (TDB.T_ENTIER_16S
((1.0/C_M_LSB DOE) *
G M_ INFO DBRIVB(T ALG.E_DOE)

L_M_BV_32 := TDB.T_ENTIER 32S ((1.0/C_M LSB BV) *

G_M_ INFO_ _DERIVE (T _ALG.E_BV));

if L_M BV_32 > 32767 then

P_M _DERIVE(T ALG.E _BV) := 1687FFF4;
elsif T M BV 32 < -32768 then
P_M_DERIVZ (7_ALG.E_BV) :=.16#8000¢;

else
P_M _DERIVE (T_ALG.E_BV) := UC_16S_EN_16NS (TDB.T_ENTIER_16S(L_M
end if;
Ge| . P_M DERIVE(T_ALG.E_BH) := UC_16S_EN_16NS (TDB.T_ENTIER_16S

((1.0/C_M_LSB_BH) *

G_M_INFO_DERIVE(T_ ALG.E_BH)))
end LIRE_DERIVE; —_—
~-=§finprocedure

-
procedure LIRE SEUIL (P_M SEUIL : out TDB.T _ENTIER_16Nf¢) is

-

http://moscova.inria.fr/~levy/talks/l1@enslongo/enslongo.pdf

http://moscova.inria.fr/~levy/talks/10enslongo/enslongo.pdf

Silent
Programming
Errors

Why silent? because the programmer
does not know there is an error

-]
Rump’s Royal Pain

Compute 333.75y8 + x2(11x2y2 — 6 — 1214 — 2) + 5.58 + x/(2y)
where x = 77617, y = 33096.

- Using IBM (pre-IEEE Standard) floats, Rump got
+ 1.172603 in 32-bit precision

+ 1.1726039400531 in 64-bit precision
+ 1.172603940053178 in 128-bit precision

- Using |IEEE double precision: 1.18059x 104"

- Correct answer: —-0.82739605994682136-!
Didn’t even get sign right

The end of numerical Error

John L. Gustafson, Ph.D.

Copyright @ 2015 John L. Gustafson

Beyond Floating Point:

Next generation computer arithmetic
John Gustafson

(Stanford lecture)

https://www.youtube.com/watch?v=aPOY1uAA-2Y

https://www.youtube.com/watch?v=aP0Y1uAA-2Y

Arithmetic
IS very difficult
to get right

* Same answer in single and double
precision does not mean the answer
IS right

e |f it matters you must prove every line
containing arithmetic Is correct

e Real arithmetic I1s not associative

Most programmers think
that a+(b+c) is the same as (a+b)+c

> ghci $ python

Prelude> a = 0.1 + (0.2 + 0.3) Python 2.7.10

Prelude> a >> x = (0.1 + 0.2) + 0.3

0.6 >>>y = 0.1 + (0.2 + 0.3)

Prelude> b = (0.1 + 0.2) + 0.3 >>> x==y

Prelude> b False

0.6000000000000001 >>> print('%.17f' %x)

Prelude> a == b 0.60000000000000009

False >>> print('%.17f"' %y)
0.59999999999999998

$ erl

Eshell V9.0 (abort with ~G)

1> X = (0.1+0.2) + 0.3.
0.6000000000000001
2> Y = 0.1+ (0.2 + 0.3).

0.6
3> X ==Y,
false

Most programming languages think
that a+(b+c) differs from (a+b)+c

Value errors

Program does not crash, but the values computed
are incorrect or inaccurate

How do we know if a program/value is incorrect if
we do not have a specification”

Many programs have no specitications or specs
that are so iImprecise as to be useless

The specification might be incorrect
and the tests and the program

Programmer
does not know
what to do

CRASH

- [call this “let it crash”
- Somebody else will fix the error
- Needs concurrency and links

What do you
do when you
recelve an
error’?

e Maintalin an invariant

e [ry to do something simpler

IS that all?

What's In a message”

o @

Inside black boxes are programs
There are thousands of programming
languages
What language used is irrelevant
The only important thing is what
happens at the interface
Two systems are the same if they
obey observational equivalence

T

* |nteraction between components
INnvolves message passing

 There are very few ways to describe
messages (JSON, XML)

 There are very very few formal ways to
describe the valid sequences of
messages (= protocols) between
components (ASN.1)
session types

Protocols are
contracts

Contracts
assign blame

The client and server are
isolated by a socket - so it

should “in principle” be But it’s not easy
easy to change either the

client or server, without

changing the other side

Who describes

what is seen on the
wireé@

® -

The contract checker
describes what is
seen on the wire.

How do
we describe
contracts®

