
2018-05-28

1

Legacy Evolution – The Innovation
Opportunity

Dave Thomas

Chief Scientist Kx Systems,
Founder YOW! Conferences and Workshops

Outline

1. Legacy Evolution Value Proposition

2. Typical Code Driven Approaches

3. A Lean Data and Flow Driven
Approach

4. Leverage Technology Innovations

5. Management Buy In and Risk

6. Innovation Opportunities/Insertion
Points

7. Innovation Patterns in Practice

2018-05-28

2

Legacy?

A Legacy is an application of substantial value to the
business that requires a major evolution to meet the
needs of the business.

Common Properties
Lack of documentation
Lack of tests
Lack of knowledge of the code base
Older language/platform …

Legacy Evolution Value Proposition

1. Improve Access to Data

2. Enhance/Change Functionality (Business or
Regulatory)

3. Reduce Time/Cost of Processing

2018-05-28

3

Legacy Code ? No Fear … 1, 2, 3 Charge!

Our vendor, our consultant , our
outsourcer, our team has the

solution !!!
1. Outsource It!

2. Rewrite It Using Modern Language,
Platform

3. Use Agile and TDD It!

4. Just make it all cloud microservices!

We must reduce our technical debt! It
will take years and lots of money
but we will attack and refactor,

rewrite legacy mountain

Technical Debt as Defined versus as Used

Ward’s definition …

“The whole debt metaphor, is the ability to pay back debt,
and make the debt metaphor work for your advantage
depends upon your writing code that is clean enough to be
able to refactor as you come to understand your problem.”
i.e. write a little code, refactor a little code.

©© Dave Thomas 2018

Refactoring – A Disciplined Practice fo Small
Changes – Equivalence Preserving made easy by
Tests

• Most Refactorings are disguised Rewrites!
• Existing tool and practices don’t offer any serious support

for large code bases

2018-05-28

4

Avoid Systemic Changes!

Systemic changes focus on two or more of
code, people and technology across a code
base using new methods, practices and
technology.

Requires a substantive base of requirements
and tests which in them selves are expensive
and time consuming.

All at once change reduces opportunity for
experiments, learning and adaption.

Targeted Value Driven Development

1. Identify the simplest things that can possibly
work and deliver sufficient ROI.

2. Choose projects which can be narrowly scoped
to:

a) Selective Code Focus

b) Data/Flow Focus

3. Put a small team of key skills on specific tactical
target.

4. Timebox the changes to 3 – 4 months

2018-05-28

5

Leverage Innovations

1. Improved Business Practices
§ Simplification, Partnering, Regulatory …

2. Improved Hardware Technology
§ Performance, Capacity, Scalability …

3. Improved Software Technology
§ Algorithms, Languages, Database, Cloud, ML …

4. Improved Software Practices
• Property Based Testing, Immutability, Programming

Models

Management Buy In – ROI and Risk Mitigation

Business

• Clear tangible measureable goals
• ROI model shows significant business value

(5x, >15%)
• Implementation Timeline of 3 – 5 months
• Minimal Impact on day to day Business

Operations
• Strong Senior Business Sponsor

2018-05-28

6

Management Buy In – ROI and Risk Mitigation

Technical

• Small team tech/business with track record
• Access to specialist technical skills
• Localized changes, minimal dependencies
• SLA easy to monitor by acceptance tests
• Proof of Concept validation in weeks
• Proof of Scale validation in weeks
• Straight forward DevOps deployment
• Independent Acceptance Testing

Selective Code Focus

• Small computational bottle necks

• Highly structured rules/calculations

• Points of high variability/constant change

2018-05-28

7

Innovation Opportunities/Insertion Points

Code Focused
• “Engines” which capture variability

• State Machine
• Rule Machines
• Logic Machines
• Constraints
• Data Flow

• DSL Spec by Example => Programming By Example –
Self Service

• Simple SIMD computation may allow GPU or cluster of
simple multicore

• Independent isolated computations may allow multi core
cluster/distributed

Lean Data and Flow Centric Approach

Why focus on Data and Flows?

• Need to find targeted opportunities high value
intervention

• Data is the largest and most stable corporate asset

• Data transformations are the primary function of an IT
system

• Often the easiest insertion point

• Often easier to test and monitor

2018-05-28

8

Innovation Opportunities/Insertion Points

Data and Flow Focused
• Database, File, Log, Messaging, Serialization,
• Shared Memory, Disk, Network…
• Functional Transformers - ETL Interface; Map

Reduce; GPU …
• Sync Replicate

Legacy Innovation Patterns

1. Make it Table/Data Driven to accommodate variability

Code => Tables | Rules |Constraints …

Case Study – Global HR Provider

Case Study - Commercial Insurance Provider

2018-05-28

9

Legacy Innovation Patterns

1. Make it Table/Data Driven to accommodate variability

Code => Tables | Rules |Constraints …

2. Make it look like the Web

Integration => HTTP/ATOM/REST vs APIs

Case Study - Process Control

Legacy Innovation Patterns

1. Make it Table/Data Driven to accommodate variability

Code => Tables | Rules |Constraints …

2. Make it look like the Web

Integration => HTTP/ATOM/REST vs APIs

3. You really only need ONE API

Make it look like a SELECT

a. Make it look like a data base => ODBC for x

b. Make it look like a collection => LINQ/Rx

c. Make it look like federated query => GraphQL

Case Study - Legacy Manufacturing Application

– Providing a Uniform API for Apps

2018-05-28

10

Legacy Innovation Patterns

1. Make it Table/Data Driven to accommodate variability

Code => Tables | Rules |Constraints …

2. Make it look like the Web

Integration => HTTP/ATOM/REST vs APIs

3. You really only need ONE API

Make it look like a SELECT

a. Make it look like a data base => ODBC for x

b. Make it look like a collection => LINQ/Rx

c. Make it look like federated query => GraphQL

4. Apply a Functional Transformer

Legacy Innovation Patterns

5. Leverage massive memory RAM, NVME …

Simpler code executes at speed

Reduce cache complexity using in memory DB

Caste Study – Cyber Analytics

2018-05-28

11

Legacy Innovation Patterns

5. Leverage massive memory RAM, NVME …

Simpler code executes at speed

Reduce cache complexity using in memory DB

6. Use Simple Data Flow and Microserives

Natural isolation, loose one way coupling

Case Study – Forward Technology – Fred George

Legacy Innovation Patterns

5. Leverage massive memory RAM, NVME …

Simpler code executes at speed

Reduce cache complexity using in memory DB

6. Use Simple Streaming and Data Flow

Natural isolation, loose one way coupling

7. Leverage immutable data – RDB +BDB, Logs

Reduce the complexity of updates, leverage
replicated subsets

Case Study – Common Solution in Capital Markets

2018-05-28

12

Legacy Innovation Patterns

5. Leverage massive memory RAM, NVME …

Simpler code executes at speed

Reduce cache complexity using in memory DB

6. Use Simple Streaming and Data Flow

Natural isolation, loose one way coupling

7. Leverage immutable data – RDB +BDB, Logs

Reduce the complexity of updates, leverage replicated subsets

8. TDD and More – Property Based Testing;

Independent Implementation of Validation…

Case Study - Database Restructuring

Embrace your Legacy
and

Innovate in It!

Thanks!

