
Computer Science

A guide
for

the perplexed

Joe Armstrong

Computer science
is confusing

because it’s not a science
and there are far too many

ideas floating around

The “latest stuff” is
  

not Computer Science

My goals

• Identify some problems worth solving

• Identify the stuff worth learning 
 
 
 
[note: this is a very biased view]

• 50 years ago there was too little
software 

• 25 years ago it was about right  

• Now there’s too much 
(sorry about that) 

• The problems that Computer Scientists
Study 

• The problems users have  

• The problems Industry solves  

These are all completely different

Things we can create
Things we can understand

Things we can create

Things we can understand

Huge Gap

3N+1
• If N is odd replace it by 3N+1

• If N is even replace it by N/2

The Collatz conjecture is:
This process will eventually reach the number 1,
for all starting values on N

"Mathematics may not be ready for such
problems”

Paul Erdős

Part 1
Back in the

1980’s
I had a plan

• How to find things
• How to store things
• How to program things

Sub-goals

• Learn emacs

• Learn unix

• Learn a programming language

What happened?

• I didn’t learn emacs

• I didn’t learn unix

• I created a programming language

• Finding things 
Google and friends (but we find the wrong stuff)

• Saving things  
Dropbox and friends (but it not forever, only as long
as your credit card keeps up the payments)

• Programming things  
Some small improvements - nothing dramatic  
The last new thing was Prolog - no major
improvements since then.

Some Progress
(after 30 years)

What ideas has we forgotten?

The next day

277

I made some lists

• Collect lots of items easy

• Assign to lists difficult

• Shorten the lists to N items (N is small) very difficult  
Throwing things away is much more difficult than
collecting things - but what’s left is better.

Part 2
Things to learn

(the lists)

• 2 great papers to read
• 4 old tools to learn
• 4 really bad things
• 3 great books to read
• 7 reasons why software is difficult now
• 10 reasons why software was easier back in the day
• 1 fun programming exercise
• 8 great machines from the past

  
 … and …

80 things to do

…
• 3 performance improvements
• 5+ YouTube videos to watch
• 6 things not to do
• 5 sins
• 4 languages to learn
• 4 great forgotten ideas
• 6 areas to research
• 2 dangers
• 4 ideas that are obvious now but strange at first
• 2 fantastic programs to try

2 great papers to read

• A Plea for Lean Software - Niklaus Wirth

• The Emperor’s old clothes - ACM Turing award
lecture - Tony Hoare

Wirth

Hoare

4 old tools to learn

• emacs (vi)

• bash

• make

• shell 

4 really bad things

• Lack of Privacy

• Attempts to manipulate us through social media

• Vendor Lock in

• Terms and Conditions

Terms and Conditions

• I’ve read all the terms and conditions and
understood them

• I’ve read the terms and conditions and didn’t
understand them

• I just clicked on accept

3 great books to read

7 reasons why software is
difficult now

• Fast machines

• Huge memory

• Hundreds of PLs

• Distributed

• Huge programs

• No specifications

• Reuse

10 reasons why software
was easier back in the day
• Small machines

• Small memory

• Few languages

• Not distributed

• No reuse of code

• No Xcode etc

• No GIT.

• Complete control

• Did not communicate

• Understandable in it’s entirety

1 fun programming exercise

Serious fun - might cause

your brain to melt

8 great machines from the
past

• Baby SSEM

• PDP11

• Vax 11/750

• Cray 1

• IBM PC

• Raspberry PI

• iPhone/iPad

• Nvidia Tesla P100

3 performance improvements

• Better algorithms (x 6) (Interpreter -> Compiler)

• Better Programming language (x50) (Prolog -> C)

• Better Hardware (x1000 per 10 years)

5+ YouTube videos to watch
• The computer revolution has not happened yet 

Alan Kay

• Computers for Cynics  
Ted Nelson

• Free is a lie (Aaron Balkan)

• How a handful of tech companies control billions of minds
every day Tristan Harris (TED-Talk)

• Matt Might - Winning the War on Error: Solving Halting
Problem, Curing Cancer - Code Mesh 2017

6 things not to do
• Backdoors

• Violate privacy

• Put microphones in everybody's houses

• Hijack our attention system

• Hijack our social systems

• Sell crap that we don’t want or need

5 sins
• Crap documentation

• Crap website

• Crap dependencies

• Crap build instructions

• Group think

4 languages to learn

• C

• Prolog

• Erlang

• Javascript

4 great forgotten ideas

• Linda Tuple Spaces - David Gelernter and
Nicholas Carriero.

• Flow based programming - John Paul Morrison.

• Xanadu - Ted Nelson

• Unix pipes

Pipes

• The output of my program should be the input
to your program

• A | B | C

• Text-flows across the boundary

• Killed by GUIs and Apps (Apps are not pipeable)

Apps

• Pads - Tablets - Phones

• Human can interact with Apps

• Apps can’t interact with each other

• You are locked inside your Apps. They all do
different things with a varying degree of success.

6 areas to research
• Robotics

• AI

• Progammer productivity

• Energy efficiency

• Precision Medicin

• Security

2 dangers

• Group think

• Bubble think

4 ideas that are obvious now
but strange at first

• Indentation

• Versioning

• Hypertext across machine boundaries

• Pipes

2 fantastic programs to try

• TiddlyWiki
• SonicPI

Part 3
Important non

computer science
things

learn to write

• A program with excellent
documentation is not going to go
anywhere

• …

3 rules at work
• If you get a bad boss move immediately  

do not try to change your boss

• The relationship comes first (Jane Walerud)

• Engage with management 
just because they do not understand what you are
saying is no reason not to talk to them - and whose
fault is it anyway (that they don’t understand you)

7 distractions
• Open plan offices

• The latest stuff

• Twitter/Facebook (social media)

• Notifications (turn ‘em off)

• Links (don’t click on them)

• Ban Scrum etc.

• We can only do one thing at a time  
Our brains are terribly bad at context switching

6 ways to get your boss to
<program in XXX>

• Do things that gain trust

• Tell success stories

• Reduce fear of failure

• Introduce on a small scale - for a part of the problem

• Network with XXX folks

• Make a prototype at home

• (don’t bother - quit and form a company)

1 thing to look for when
applying for a new job

• Look at their balance sheet  
a company with a positive cash flow and increasing
profits is good to work for - a company that makes
a loss is not good to work for

3 general laws

• Software complexity grows with time (because we
build on old stuff)

• Bad code crowds out good (Gresham’s law)  
bad money drives out good (clipping)

• Bad code contaminates good code

Laws of Physics
and maths

3 laws of physics
• A computation can only take place when the data and

the program are at the same point in space time => get
all the data + program to the same place (can be client
OR server or someplace in-between) (problem - easy to
move data - difficult to move programs) This is why
PHP is good :-)

• Causality - Effect follows cause. We don’t know how stuff
is we know how it was (the last time it told us)

• 2’nd law thermo dynamics - Entropy (disorder) always
increases

• Early Unix (1970) had a very small disk so
programs that were not used were thrown away  
(decreases entropy - natural selection)

• Git keeps all old versions (increases entropy -
cancer)

• https://en.wikipedia.org/wiki/Unix_philosophy

Entropy

https://en.wikipedia.org/wiki/Unix_philosophy

Trust and
Responsibility

Trust is transitive

• I trust the SW written by Robert

• Robert wrote X

• => I trust X

Can I trust X?

• I need a program to do X

• I find X in github

• I do not know who wrote X

• Can I trust X?

Responsibility
• I reuse X in program P

• I ship program P to custom A

• A reports an error in P

• I am responsable

• => I must trust that P is correct

User’s Problems

6 common problems
• Does not know how to delete files - when the system runs out of

space they buy a new computer

• No idea of what MBytes, Mbits, Bbits/sec quad cores etc means

• If the app doesn’t work immediately gives up

• Does not Google for fixes - or does and does not understand the
answers

• Does not want to try the latest things

• Uses a method that works (not the best) - ie to copy 
a file open word - read the file in then writes it out with a new name

5 more Problems
• The UI changes

• Passwords

• Stuff doesn’t work

• Terms & Conditions

• … non reproducible errors

Helping your non-technical neighbour

• Tell them “it’s not your fault”

• Tell them “it’s crap software”

• Tell them “I don’t understand this crap either”

• Tell them “computers can’t do everything”

Part 4
Important

half forgotten BIG
ideas

Things can be small

• Forth OS 24 KB

• Forth compiler 12KB

• IBM PC DOS < 640KB

• USCD Pascal

• Turbo Pascal

• Turbo C

The old truths

• Keep it simple

• Make it small

• Make it correct

• Fight complexity

Learning

• Kids can learn computing

• OAPs can learn computing

• Everybody can learn computing  
It was easy to learn BASIC back in the 80’s so  
why is it more difficult now?

Web is broken
• It’s not symmetric  

Users read data but write very little

• Can every page be changed?

• Can I make new data by combining fragments from other data
in a flexible manner? - no

• The Web is dominated by a small number of  
companies (Amazon, Apple, Goole, Facebook) using huge data
centers, it should be controlled from the edge network.

• The original vision was a Web controlled by “citizen
programmers” (Google “Ted Nelson talks”)

Xanadu
• Like the web but better

• No broken links

• No difference between readers and writers

• Never loose any data

• All copyright and attribution correct

• Complete knowledge of parents and children

Problems

• Solve the “404 - Not found” problem

• Make sure we don’t loose all our history

• Think Joules not $

• We are responsible for the negative side effects of
our technology

Part 5
What we can do

• Unbreak the web  
Make it read/write symmetric

• Bring computation to the edge network

• Ensure that all personal data is owned by the
individual and not by large corporations

• Make computing easy again

• Build Apps so they can communicate with each
other

Reduce
Entropy

Write less code
not more

Throw old code
away

Write code that is
correct forever

Don’t reuse code
rewrite it

A program that is not secure
and cannot be remotely

controlled should not be written

We’ve given
millions of people
supercomputers -

so let them use them
and …t

It’s your turn nextt

