
Designing Features for Mature Systems:
Lessons Learned from Manta

Jordan Paige Hendricks
@itsajordansystm

GOTO Chicago
April 25, 2018

https://twitter.com/itsajordansystm

Legacy?

Manta 101!

Manta 101: Features

● Highly scalable, distributed object store
● HTTP-based
● Compute as a first class citizen!

○ Manta “jobs”
● Interface feels like a Unix filesystem

/jhendricks/stor/myDir/myObj.txt

Manta 101: API operations

● mput: upload an object
● mget: download an object
● mrm: remove an object
● mmkdir: create a directory
● mrmdir: remove a directory
● mls: list a directory
● mln: make a ‘snaplink’ to an object
● mlogin: login to a container with your object

https://docs.google.com/file/d/10Wi24i2GftO9fWXcjOHc8nnZpXJZH583/preview

Manta 101: System Primitives

● Objects
○ Stored as flat files
○ Immutable

● Directories
○ Are listable!

Manta 101: Design Constraints

● CP system
○ When faced with a

network partition, Manta
chooses consistency
over availability.

● Horizontally scalable where
possible

GET /jhendricks/stor/foo.txt

client

https://us-east.manta.joyent.com

GET /jhendricks/stor/foo.txt

client

TLS/LB
muppet

https://us-east.manta.joyent.com

GET /jhendricks/stor/foo.txt

client

TLS/LB
muppet

API server
muskie

https://us-east.manta.joyent.com

GET /jhendricks/stor/foo.txt

client

TLS/LB
muppet

API server
muskie

auth
mahi

https://us-east.manta.joyent.com

“OK?”

GET /jhendricks/stor/foo.txt

client

TLS/LB
muppet

API server
muskie

auth
mahi

https://us-east.manta.joyent.com

“OK?”

“OK!”

Manta Design: Data Path

● Architectural separation of metadata and storage
● Metadata tier responsible for information about the

objects: its name, size, content MD5, who owns it,
permissions, where it is stored, etc.

● Storage tier responsible for storing the object
○ Compute jobs also run directly on data on storage

CNs

GET /jhendricks/stor/foo.txt

client

TLS/LB
muppet

API server
muskie

auth
mahi

electric-moray

KV protocol
shards keys

https://us-east.manta.joyent.com

“OK?”

“OK!”

getobject /:uuid/stor/foo.txt

GET /jhendricks/stor/foo.txt

electric-moray
2.moray

KV protocol
shards keys

KV store

3.moray

KV store

4.moray

KV store

GET /jhendricks/stor/foo.txt

electric-moray
2.moray

KV protocol
shards keys

KV store

3.moray

KV store

4.moray

KV store

hash(dirname(“/:uuid/stor/foo.txt”))
=> 3.moray

GET /jhendricks/stor/foo.txt

electric-moray
2.moray

KV protocol
shards keys

KV store

3.moray

KV store

4.moray

KV store

getobject /:uuid/stor/foo.txt

hash(dirname(“/:uuid/stor/foo.txt”))
=> 3.moray

GET /jhendricks/stor/foo.txt

electric-moray

KV protocol
shards keys

3.moray

KV storegetobject
 /:uuid/s

tor/foo.t
xt

manatee
(sync)

manatee
(async)

manatee
(primary)

Postgres

3.postgres

GET /jhendricks/stor/foo.txt

electric-moray

KV protocol
shards keys

3.moray

KV storegetobject
 /:uuid/s

tor/foo.t
xt

manatee
(sync)

manatee
(async)

manatee
(primary)

Postgres

SELECT * FROM
‘manta’ WHERE...

3.postgres

GET /jhendricks/stor/foo.txt

electric-moray

KV protocol
shards keys

3.moray

KV storegetobject
 /:uuid/s

tor/foo.t
xt

manatee
(sync)

manatee
(async)

manatee
(primary)

postgres

SELECT * FROM
‘manta’ WHERE...

{
“key”: “/:uuid/stor/foo.txt”,
“type”: “object”,
“dirname”: “/:uuid/stor”,
“headers”: {

“content-length”: 13,
“durability-level”: 2,
“content-type”: “application/text”

},
“sharks”: [

{
“dc”: “dc-2”,
“id”: “5.stor”

},
{

“dc”: “dc-3”,
“id”: “7.stor”

}
]

}

{

“k
ey
”:
 “
/:
uu
id
/s
to
r/
fo
o.
tx
t”
,

“t
yp
e”
:
“o
bj
ec
t”
,

“d
ir
na
me
”:
 “
/:
uu
id
/s
to
r”
,

“h
ea
de
rs
”:
 {
“c
on
te
nt
-l
en
gt
h”
:
13
,

“d
ur
ab
il
it
y-
le
ve
l”
:
2

},
“s
ha
rk
s”
:
[
{

“d
c”
:
“d
c-
2”
,

“i
d”
:
“5
.s
to
r”

},
{

“d
c”
:
“d
c-
3”
,

“i
d”
:
“7
.s
to
r”

}

]

}

GET /jhendricks/stor/foo.txt

electric-moray

KV protocol
shards keys

3.moray

KV store

manatee
(sync)

manatee
(async)

manatee
(primary)

postgres

{
“key”: “/:uuid/stor/foo.txt”

...
“sharks”: [

{
“dc”: “dc-2”,
“id”: “5.stor”

},
{

“dc”: “dc-3”,
“id”: “7.stor”

}
...

GET /jhendricks/stor/foo.txt

electric-moray

2.moray manatee
(primary)

KV protocol
shards keys

KV store

3.moray

KV store

4.moray

KV store

manatee
(sync)

manatee
(async)

postgres

API server
muskie

{
“key”: “/:uuid/stor/foo.txt”

...
“sharks”: [

{
“dc”: “dc-2”,
“id”: “5.stor”

},
{

“dc”: “dc-3”,
“id”: “7.stor”

}
...

GET /jhendricks/stor/foo.txt

API server
muskie

1.stor

2.stor

3.stor

4.stor

6.stor

5.stor

7.stor

9.stor

8.stor

dc-1

dc-2

dc-3

{
“key”: “/:uuid/stor/foo.txt”

...
“sharks”: [

{
“dc”: “dc-2”,
“id”: “5.stor”

},
{

“dc”: “dc-3”,
“id”: “7.stor”

}
...

GET /jhendricks/stor/foo.txt

API server
muskie

1.stor

2.stor

3.stor

4.stor

6.stor

5.stor

7.stor

9.stor

8.stor

dc-1

dc-2

dc-3

GET /:owner/:objectId

{
“key”: “/:uuid/stor/foo.txt”

...
“sharks”: [

{
“dc”: “dc-2”,
“id”: “5.stor”

},
{

“dc”: “dc-3”,
“id”: “7.stor”

}
...

GET /jhendricks/stor/foo.txt

API server
muskie

1.stor

2.stor

3.stor

4.stor

6.stor

5.stor

7.stor

9.stor

8.stor

dc-1

dc-2

dc-3

“Hello, goto!”

{
“key”: “/:uuid/stor/foo.txt”

...
“sharks”: [

{
“dc”: “dc-2”,
“id”: “5.stor”

},
{

“dc”: “dc-3”,
“id”: “7.stor”

}
...

GET /jhendricks/stor/foo.txt

API server
muskie

1.stor

2.stor

3.stor

4.stor

6.stor

5.stor

7.stor

9.stor

8.stor

dc-1

dc-2

dc-3

{
“key”: “/:uuid/stor/foo.txt”

...
“sharks”: [

{
“dc”: “dc-2”,
“id”: “5.stor”

},
{

“dc”: “dc-3”,
“id”: “7.stor”

}
...

GET /jhendricks/stor/foo.txt

API server
muskie

1.stor

2.stor

3.stor

4.stor

6.stor

5.stor

7.stor

9.stor

8.stor

dc-1

dc-2

dc-3

GET /:owner/:objectId

{
“key”: “/:uuid/stor/foo.txt”

...
“sharks”: [

{
“dc”: “dc-2”,
“id”: “5.stor”

},
{

“dc”: “dc-3”,
“id”: “7.stor”

}
...

GET /jhendricks/stor/foo.txt

API server
muskie

1.stor

2.stor

3.stor

4.stor

6.stor

5.stor

7.stor

9.stor

8.stor

dc-1

dc-2

dc-3

“Hello, goto!”

PUT /jhendricks/stor/newObj.txt

● Authorization (mahi)
● Muskie picks sharks to store the object on (spread

across at least 2 DCs)
● Muskie streams the data to the sharks
● Muskie updates electric-moray with the new

metadata record

Manta Design: Compute

● Objects can be large
● Want to avoid copying data between servers
● To make objects possible to compute on with existing

software, Manta’s abstraction for an object is a flat file on its
storage node.
○ Can run programs directly on these files

● Instead of copying data to run jobs on, move jobs to where the
data lives!

$ wc /jhendricks/stor/foo.txt

API server
muskie

5.stor

$ cat foo.txt
Hello, goto!

client

$ wc /jhendricks/stor/foo.txt

API server
muskie

5.stor

$ cat foo.txt
Hello, goto!

wc /:uuid/foo.txt

client

$ wc /jhendricks/stor/foo.txt

API server
muskie

5.stor

$ wc foo.txt
 1 2 13 foo.txt

wc /:uuid/foo.txt

client

Multipart Uploads!

Multipart Uploads: First Principles

● Upload an object in “parts”
● “Commit” the object when all parts are uploaded

○ Creates a new object, indistinguishable from normal
objects created via PUT path

● Use cases?
○ Large files
○ Intermittent network connections
○ Streaming data from a source

Multipart Uploads: Design Questions

● How to identify multipart uploads?
● Where to store parts?
● What does a “commit” of an MPU look like?

Multipart Uploads: Design Considerations

● How can we ensure parts are listed easily?
● How can we list all multipart uploads?
● What happens if multiple clients operate on the same

MPU?
● What happens during failures of Manta components?
● How will parts be cleaned up after commit?
● ...Can I cancel MPUs, too?

Multipart Upload Design

● How to identify MPUs?
○ UUID per MPU

● How to store parts?
○ Obvious answer: Use Manta objects!
○ Store parts as objects in a Manta directory
○ One directory per MPU: max of 10,000 parts << number

allowed dirents (1 million)
○ Allows clients to list parts easily

Multipart Upload Design

● How to store part directories?
○ Under a new top-level directory, /:account/uploads (analogous

to /:account/jobs)
○ But: don’t want to limit the number of ongoing MPUs to the number

of allowed dirents
○ Solution: one-level nested “prefix” directories, in which all uploads

starting with the same characters have the same parent
○ Allows all MPUs to be listed in as many requests as it takes to list

all prefix directories

Example MPU Structure

● Upload ID: eaff0760-9b17-4fb7-b7c4-f2de818681f3
● Parts directory

/jordan/uploads/eaf/eaff0760-9b17-4fb7-b7c4-f2de818681f3

● Example parts

/jordan/uploads/eaf/eaff0760-9b17-4fb7-b7c4-f2de818681f3/0
/jordan/uploads/eaf/eaff0760-9b17-4fb7-b7c4-f2de818681f3/1
/jordan/uploads/eaf/eaff0760-9b17-4fb7-b7c4-f2de818681f3/2

Multipart Upload Design: Commits

● Design constraints for mpu-commit operation?
○ Must be idempotent
○ Must be atomic

● What steps need to happen in Manta architecture?
○ Metadata layer: Insert an object record for the target

object
○ Storage layer: Create the object on disk from its parts, on

the appropriate storage nodes

Commit: Storage Layer Implementation

● Constraints
○ Cannot append or mutate parts on an existing object
○ Would like to avoid copying data over network

● Design
○ Co-location of parts on the storage nodes the final target object

will live on
○ Create object on disk from parts locally
○ New operation on mako (storage node service):

mako-finalize: requires array of part etags

mako-finalize

Part 0:
ID 6f39c3ae

Size: 5 MB

Part 1:
ID 9f5b0761

Size: 5 MB

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

3.stor.us-east.joyent.us

Part 0:
ID 6f39c3ae

Size: 5 MB

Part 1:
ID 9f5b0761

Size: 5 MB

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d

3.stor.us-east.joyent.us

mako-finalize

Part 0:
ID 6f39c3ae

Size: 5 MB

Part 1:
ID 9f5b0761

Size: 5 MB

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 0 MB

append

3.stor.us-east.joyent.us

mako-finalize

Part 0:
ID 6f39c3ae

Size: 5 MB

Part 1:
ID 9f5b0761

Size: 5 MB

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 5 MB

append

3.stor.us-east.joyent.us

mako-finalize

Part 0:
ID 6f39c3ae

Size: 5 MB

Part 1:
ID 9f5b0761

Size: 5 MB

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 10 MB

appen
d

3.stor.us-east.joyent.us

mako-finalize

Part 0:
ID 6f39c3ae

Size: 5 MB

Part 1:
ID 9f5b0761

Size: 5 MB

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 15 MB

app
end

3.stor.us-east.joyent.us

mako-finalize

Part 0:
ID 6f39c3ae

Size: 5 MB

Part 1:
ID 9f5b0761

Size: 5 MB

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 16 MB

3.stor.us-east.joyent.us

mako-finalize

Part 1:
ID 9f5b0761

Size: 5 MB

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 16 MB

3.stor.us-east.joyent.us

mako-finalize

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: 67115618

df60f14d
size: 16 MB

3.stor.us-east.joyent.us

mako-finalize

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 16 MB

3.stor.us-east.joyent.us

mako-finalize

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 16 MB

3.stor.us-east.joyent.us

mako-finalize

mako-finalize: atomicity & idempotency

● What happens if mako crashes…
○ While writing to the target object file?

Part 0:
ID 6f39c3ae

Size: 5 MB

Part 1:
ID 9f5b0761

Size: 5 MB

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
outputFile: df60f14d

df60f14d
size: 10 MB

appen
d

3.stor.us-east.joyent.us

mako-finalize

Part 0:
ID 6f39c3ae

Size: 5 MB

Part 1:
ID 9f5b0761

Size: 5 MB

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
outputFile: df60f14d

df60f14d
size: 10 MB

appen
d

CRASH
!

3.stor.us-east.joyent.us

mako-finalize

mako-finalize: atomicity & idempotency

● What happens if mako crashes…
○ While writing the target object file?

■ mako-finalize can safely retry later, because
it hasn’t removed the parts yet

○ While removing parts?

●

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

Part 1:
ID 9f5b0761

Size: 5 MB

df60f14d
size: 16 MB

Part 0:
ID 6f39c3ae

Size: 5 MB

3.stor.us-east.joyent.us

mako-finalize

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 16 MB

Part 1:
ID 9f5b0761

Size: 5 MB

3.stor.us-east.joyent.us

mako-finalize

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 16 MB

3.stor.us-east.joyent.us

mako-finalize

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d

df60f14d
size: 16 MB

CRASH
!

3.stor.us-east.joyent.us

mako-finalize

mako-finalize: atomicity & idempotency

● What happens if mako crashes…
○ While writing the target object file?

■ Can safely retry later, because it hasn’t removed the
parts yet

○ While removing parts?
■ Can still retry later…
■ Need a way to check that the target object file exists

and is correct

●

mako-finalize

Part 2:
ID 57d4fd3e

Size: 5 MB

Part 3:
ID 5002e70d

Size: 1 MB

df60f14d
size: 16 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d
nbytes:16 MB

3.stor.us-east.joyent.us

mako-finalize

Part 3:
ID 5002e70d

Size: 1 MB

df60f14d
size: 16 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d
nbytes:16 MB

3.stor.us-east.joyent.us

mako-finalize

df60f14d
size: 16 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d
nbytes:16 MB

3.stor.us-east.joyent.us

mako-finalize

df60f14d
size: 16 MB

parts: [
6f39c3ae,
9f5b0761,
57d4fd3e,
5002e70d

]
targetFile: df60f14d
nbytes:16 MB

SUCCESS!

3.stor.us-east.joyent.us

mako-finalize: atomicity & idempotency

● Protections presented thus far prevent problems from the same MPU (exact same set
of parts)

● Additional constraints needed at the muskie (REST API) layer
○ Don’t want to allow two clients to commit a different set of parts for the same

MPU
■ Check for conflicts before invoking mako-finalize

○ Other conflicts:
■ Aborts and commits conflict with each other

● If one client tries to commit an MPU and another tries to abort it, we
only want one to win (atomicity)

○ Need to store additional state in the metadata tier

Commits: atomicity & idempotency

● Where do we store the multipart upload state?
● Considerations:

○ Need the state change and target object’s visibility in
Manta to be an atomic operation

● Suppose state about an MPU was stored in only the
metadata record of the parts directory…
○ Is this atomic?

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

State:
CREATED

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

State:
CREATED

State:
COMMITTED

write MPU state

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

State:
CREATED

State:
COMMITTED

write MPU state

write object record

/jan/stor/big-object

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

State:
CREATED

State:
COMMITTED

write MPU state

write object record

/jan/stor/big-object

OK

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

State:
CREATED

State:
COMMITTED

write MPU state

write object record

/jan/stor/big-object

OK

OK

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

State:
CREATED

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

State:
CREATED

State:
COMMITTED

write MPU state

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

State:
CREATED

State:
COMMITTED

write MPU state

write object record

/jan/stor/big-object

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

State:
CREATED

State:
COMMITTED

write MPU state

write object record

/jan/stor/big-object

OK

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

muskie (REST API server)

Multipart Upload Commits: Idempotency
re
ad
 M
PU

st
at
e

State:
CREATED

State:
COMMITTED

write MPU state

write object record

/jan/stor/big-object

OK

OK??

Commits: atomicity & idempotency

● Storing official state of MPU on parts directory metadata record is not
atomic!

● Need visibility of object and state change of multipart upload to occur
together, or not at all

● Solution?
○ Store official state (whether MPU is done) on the same shard as

object!
○ Can still store some state on parts directory record as an

optimization

●

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

re
ad
 M
PU

st
at
e

muskie (REST API server)

Multipart Upload Commits: IdempotencyMultipart Upload Commits: Idempotency

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

re
ad
 M
PU

st
at
e

muskie (REST API server)

State:
CREATED

Multipart Upload Commits: Idempotency

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

re
ad
 M
PU

st
at
e

muskie (REST API server)

State:
CREATED

State:
FINALIZING,

type: commit,
parts set: P

write MPU state

Multipart Upload Commits: Idempotency

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

re
ad
 M
PU

st
at
e

muskie (REST API server)

State:
CREATED

State:
FINALIZING,

type: commit,
parts set: P

write MPU state

/jan/stor/big-object
f848f790:/jan/uploads/f84/f848f790

Multipart Upload Commits: Idempotency

/jan/uploads/f84/f848f790

Upload Record
Shard

Target Object
Shard

re
ad
 M
PU

st
at
e

muskie (REST API server)

State:
CREATED

State:
FINALIZING,

type: commit,
parts set: P

write MPU state

/jan/stor/big-object
f848f790:/jan/uploads/f84/f848f790

write finalizing
record &

object record

OK

Multipart Upload Commits: Idempotency

/jan/uploads/f84/f848f790

Upload Record
Shard

/jan/stor/big-object

Target Object
Shard

State:
FINALIZING,

type: commit,
parts set: P

re
ad
 M
PU

st
at
e

muskie (REST API server)

State:
CREATED

write MPU state

write finalizing
record &

object record

OK

f848f790:/jan/uploads/f84/f848f790

OK

Multipart Upload Commits: Idempotency

Multipart Upload Commit
Upload Record

Shard
Target Object

Shard

muskie (REST API server)

re
ad
 M
PU

st
at
e

/jan/uploads/f84/f848f790

Multipart Upload Commit
Upload Record

Shard
Target Object

Shard

muskie (REST API server)

re
ad
 M
PU

st
at
e

/jan/uploads/f84/f848f790

State:
CREATED

Multipart Upload Commit
Upload Record

Shard
Target Object

Shard

muskie (REST API server)

re
ad
 M
PU

st
at
e

/jan/uploads/f84/f848f790

State:
CREATED

State:
FINALIZING,

type: commit,
parts set: P

write MPU state

Multipart Upload Commit
Upload Record

Shard
Target Object

Shard

muskie (REST API server)

re
ad
 M
PU

st
at
e

/jan/uploads/f84/f848f790

State:
CREATED

State:
FINALIZING,

type: commit,
parts set: P

write MPU state

/jan/stor/big-object
f848f790:/jan/uploads/f84/f848f790

write finalizing
record &

object record

Multipart Upload Commit
Upload Record

Shard
Target Object

Shard

muskie (REST API server)

re
ad
 M
PU

st
at
e

/jan/uploads/f84/f848f790

State:
CREATED

State:
FINALIZING,

type: commit,
parts set: P

write MPU state

/jan/stor/big-object
f848f790:/jan/uploads/f84/f848f790

write finalizing
record &

object record

OK

Multipart Upload Commit
Upload Record

Shard
Target Object

Shard

muskie (REST API server)

re
ad
 M
PU

st
at
e

/jan/uploads/f84/f848f790

State:
CREATED

State:
FINALIZING,

type: commit,
parts set: P

write MPU state

/jan/stor/big-object
f848f790:/jan/uploads/f84/f848f790

write finalizing
record &

object record

OK

r
e
a
d

M
P
U

F
R

Multipart Upload Commit

/jan/uploads/f84/f848f790

Upload Record
Shard

/jan/stor/big-object

Target Object
Shard

State:
FINALIZING,

type: commit,
parts set: P

r
e
a
d

M
P
U

F
R

muskie (REST API server)

State:
CREATED

write MPU state

write finalizing
record &

object record

OK

f848f790:/jan/uploads/f84/f848f790

re
ad
 M
PU

st
at
e

State:
DONE

OK

MPU State Machine

Commits: Final Steps

● Read upload directory record and check MPU’s state.
○ If state is CREATED, verify etags of all parts.

■ If the etags are valid, update the state on the upload record to FINALIZING,
type commit.

■ If the etags aren’t valid, return an error.
○ If state is FINALIZING, type commit, then verify the part etags match the MD5

etag summary stored on the upload directory record. If they don’t, return an error.
○ If state is FINALIZING, type abort, return an error.

● Invoke mako-finalize on the storage node set.
● Atomically insert a finalizing record and the target object record on the shard of the

target object.
● Return a response indicating success to the client.

Concurrency in other MPU operations

● mpu-create: creating a multipart upload
○ Returns a unique handle for an MPU (no contention on target object path)

● mpu-get: get the state of an MPU
○ Metadata read

● upload-part: upload a part to a given MPU
○ Can overwrite parts as often as you want (consistent with Manta PUT behavior)
○ Race between updating a upload record state to “finalizing” and inserting a new

part record
■ Doesn’t lead to any server-size inconsistency, but likely indicates a buggy

use of the API
● abort-mpu: abort an upload

○ Same concurrency protections as commit-mpu (mako-finalize is not
invoked)

Revisiting Design Constraints

● Multipart upload as a feature started with its own set of constraints
○ Atomic commits/aborts
○ Sane listing of parts & uploads

● … but was constrained to invariants of the system it was designed
for
○ Immutable objects
○ Separation between metadata and storage
○ No support for cross-shard transactions
○ Composed of distributed services that can fail unexpectedly

Working with Design Constraints

● Immutable objects: mutating objects was not a possible
solution

● Separation between metadata and storage: separate
mechanisms of maintaining correctness of metadata layer
and storage layer

● No support for cross-shard transactions: use only one shard
as the final source of truth for the state of an MPU

● Composed of distributed services that can fail unexpectedly:
consider atomicity & idempotency of all operations

Tradeoffs in Design

● mako-finalize: a complex, variable-latency operation
added to mako (previously only a thin shim on top of nginx)
○ Tradeoff: Variable-length latency hit for mpu-commit
○ Alternative: Copying data across the network, which would

probably be slower in most cases.
● muskie (REST API service) chooses storage nodes for an

MPU’s target object when it is created
○ Tradeoff: Storage nodes selected may not be available

when parts are uploaded or the object is committed.

Final Thoughts

● For a complete discussion of MPU design, see RFD 65
● When adding new functionality to a system, consider how it

will maintain the invariants of the system (and if it doesn’t, at
what cost?)

● Even *legacy* systems can have new and innovative features
the original authors never imagined :)
○ Can’t wait for a similar presentation on Manta’s tenth

birthday!

https://github.com/joyent/rfd/blob/master/rfd/0065/README.md

Questions?

