
Bret Fisher
@bretfisher

DevOps Consultant, Docker Captain 
Author of Udemy's Docker Mastery

Going Docker and Swarm
Production Like a Pro

Why Are We Here?

●Want Docker in production

●Want to orchestrate containers

●Need to make educated project decisions

●Learn which requirements could be optional

●Learn 80's/90's video games

●Hear bad analogies relating retro games to Docker

A Bit About Me

●Geek since 5th Grade

●IT Sysadmin+Dev since 1994

●Currently Container Fanboy, Consultant/Trainer

●Owned *REAL* Atari 2600, NES, SNES, Sega
Genesis, Sinclair, TRS-80, Packard Bell 386

●Likes Geek Trivia. Lets Have Some!

Project Docker
Super Project Advice Special Turbo Champion Edition

Limit Your Simultaneous Innovation

● Many initial container projects are too big in scope

● Solutions you maybe don't need day one:

○ Fully automatic CI/CD

○ Dynamic performance scaling

○ Containerizing all or nothing

○ Starting with persistent data

Legacy Apps Work In Containers Too

● Microservice conversion isn't required

● 12 Factor is a horizon we're always chasing

● Don't let these ideals delay containerization

Dockerfile Power-Ups

What To Focus On First: Dockerfiles

●More important than fancy orchestration

● It's your new build documentation

● Study Dockerfile/Entrypoint of Hub Officials

● Use FROM Official distros that are most familiar

Dockerfile
Anti-patterns

Dockerfile Anti-pattern: Trapping Data

● Problem: Storing unique data in container

● Solution: Define VOLUME for each location

Dockerfile Anti-pattern: Using Latest

● Latest = Image builds will be ¯_(ツ)_/¯

● Problem: Image builds pull FROM
latest

● Solution: Use specific FROM tags

● Problem: Image builds install latest
packages

● Solution: Specify version for critical
apt/yum/apk packages

Dockerfile Anti-pattern: Leaving Default Config

● Problem: Not changing app defaults, or blindly copying VM conf

○ e.g. php.ini, mysql.conf.d, java memory

● Solution: Update default configs via ENV, RUN, and ENTRYPOINT

Dockerfile Anti-pattern: Environment Specific

● Problem: Copy in environment config at image build

● Solution: Single Dockerfile with default ENV's, and
overwrite per-environment with ENTRYPOINT script

Lets Slay Some Infrastructure Dragons
The Big 3 Decisions

Containers-on-VM or Container-on-Bare-Metal

●Do either, or both. Lots of pros/cons to either

●Stick with what you know at first

●Do some basic performance testing. You will learn lots!

●2017 Docker Inc. and HPE whitepaper on MySQL benchmark

○ (authored by yours truly, and others)

○bretfisher.com/gotochgo18

http://bretfisher.com/gotochgo18

OS Linux Distribution/Kernel Matters

● Docker is very kernel and storage driver dependent
● Innovations/fixes are still happening here
● "Minimum" version != "best" version
● No pre-existing opinion? Ubuntu 16.04 LTS
○ Popular, well-tested with Docker
○ 4.x Kernel and wide storage driver support

● Or InfraKit and LinuxKit!
● Get correct Docker for your distro from store.docker.com

http://store.docker.com

Container Base Distribution: Which One?

● Which FROM image should you use?

● Don't make a decision based on image size (remember it's
Single Instance Storage)

● At first: match your existing deployment process

● Consider changing to Alpine later, maybe much later

Build Your Empire Swarm

Good Defaults: Swarm Architectures

● Simple sizing guidelines based off:

○ Docker internal testing

○ Docker reference architectures

○ Real world deployments

○ Swarm3k lessons learned

Baby Swarm: 1-Node

● "docker swarm init" done!

●Solo VM's do it, so can
Swarm

●Gives you more features
then docker run

HA Swarm: 3-Node

●Minimum for HA

●All Managers

●One node can fail

●Use when very small budget

●Pet projects or Test/CI

Biz Swarm: 5-Node

●Better high-availability

●All Managers

●Two nodes can fail

●My minimum for uptime that
affects $$$

Flexy Swarm: 10+ Nodes

●5 dedicated Managers

●Workers in DMZ

●Anything beyond 5 nodes, stick with
5 Managers and rest Workers

●Control container placement with
labels + constraints

Swole Swarm: 100+ Nodes

●5 dedicated managers

●Resize Managers as you grow

●Multiple Worker subnets on
Private/DMZ

●Control container placement with
labels + constraints

Don't Turn Cattle into Pets

● Assume nodes will be replaced

● Assume containers will be recreated

● Docker for (AWS/Azure) does this

● LinuxKit and InfraKit expect it

Reasons for Multiple Swarms

Bad Reasons

● Different hardware
configurations (or OS!)

● Different subnets or
security groups

● Different availability zones

●Security boundaries for
compliance

Good Reasons

● Learning: Run Stuff on Test
Swarm

● Geographical boundaries

● Management boundaries
using Docker API (or Docker
EE RBAC, or other auth plugin)

What About Windows Server 2016 Swarm?

●Hard to be "Windows Only Swarm", mix with Linux nodes

●Much of those tools are Linux only

●Windows = Less choice, but easier path

●My recommendation:

○Managers on Linux

○Reserve Windows for Windows-exclusive workloads

Bring In
Reinforcements

Outsource Well-Defined Plumbing

●Beware the "not implemented here" syndrome

●My formula for "Do we use SaaS/Commercial"?

○ If it's a challenge to implement and maintain

○+ SaaS/commercial market is mature

○= Opportunities for outsourcing

Outsourcing: For Your Consideration

● Image registry

●Logs

●Monitoring and alerting
● Big Tools/Projects: github.com/cncf/landscape

● All The Things: github.com/veggiemonk/awesome-docker

https://github.com/cncf/landscape
https://github.com/veggiemonk/awesome-docker

Tech Stacks
Designs for a full-featured cluster

Pure Open Source Self-Hosted Tech Stack
Swarm GUI Portainer
Central Monitoring Prometheus + Grafana
Central Logging ELK
Layer 7 Proxy Flow-Proxy Traefik
Registry Docker Distribution + Portus
CI/CD Jenkins Drone
Storage REX-Ray
Networking Docker Swarm
Orchestration Docker Swarm
Runtime Docker
HW / OS InfraKit Terraform

Also

Functions As A Service:

OpenFaaS

Docker for X: Cheap and Easy Tech Stack
Swarm GUI Portainer
Central Monitoring Librato Sysdig
Central Logging Docker for AWS/Azure
Layer 7 Proxy Flow-Proxy Traefik
Registry Docker Hub Quay
CI/CD Codeship TravisCI
Storage Docker for AWS/Azure
Networking Docker Swarm
Orchestration Docker Swarm
Runtime Docker
HW / OS Docker for AWS/Azure

Docker Enterprise Edition + Docker for X
Swarm GUI Docker EE (UCP)
Central Monitoring Prometheus Sysdig
Central Logging Docker for AWS/Azure
Layer 7 Proxy Docker EE (UCP)
Registry Docker EE (DTR)
CI/CD Jenkins TravisCI
Storage Docker for AWS/Azure
Networking Docker Swarm
Orchestration Docker Swarm
Runtime Docker EE
HW / OS Docker for AWS/Azure

Also

Image Security Scanning

Role-Based Access Cont

Image Promotion

Content Trust

Kubernetes

4 Can Co-Op,
But 1 Plays 
Just Fine

Must We Have An Orchestrator?

● Let's accelerate your docker migration even more

● Already have good infrastructure automation?

● Maybe you have great VM autoscale?

● Like the security boundary of the VM OS?

One Container Per VM

● Why don't we talk about this more?

● Least amount of infrastructure change but also:

○ Run on Dockerfile recipes rather then Puppet etc.

○ Improve your Docker management skills

○ Simplify your VM OS build

One Container Per VM: Not New

●Windows is doing it with Hyper-V Containers

● Linux is doing it with Intel Clear Containers

● LinuxKit will make this easier: Immutable OS

●Windows "LCOW" using LinuxKit

Summary

●Trim the optional requirements at first
●First, focus on Dockerfile/docker-compose.yml
●Watch out for Dockerfile anti-patterns
●Stick with familiar OS and FROM images
●Grow Swarm as you grow
●Find ways to outsource plumbing
●Realize parts of your tech stack may change, stay flexible

😬

Thank You!
@bretfisher

Slides & Links:
bretfisher.com/gotochgo18

http://bretfisher.com/gotochgo18

Honorable Mentions

●Metroid ('83 NES)

●Mega Man ('87 NES)

●Wolfenstein 3D ('92 PC)

●Homeworld ('99 PC)

●Legend Of Zelda ('86
NES)

●Mortal Kombat ('92)

●Doom/Quake ('93 PC)

●Contra/Castlevania ('86 NES)

● Hitchhiker's GTTG ('84 TRS-80)

●Zenophobe ('87 Arcade)

●Battlezone ('80 Arcade)

●Joust/Dig Dug ('82 Arcade)

