
The Robustness of Go
A study of Go and its ecosystem

- What does it mean to be robust?

- Robust features of Go

- Fragile features of Go

- Giving up

- Well, actually: Erlang

- A new hope

Agenda

● Francesc Campoy (@francesc / francesc@sourced.tech)

● VP of Developer Relations at source{d} (#MLonCode)

● Previously:

○ Developer Advocate at Google Cloud Platform

○ Go team

○ Machine Learning (tensorflow)

● justforfunc.com!

About me

What does it mean to be Robust?

Robustness

Fragility

Robust features of Go

● Pointers for convenience, but no pointers arithmetics.

● Escape analysis for automated allocation on heap/stack.

● Garbage collection: no dangling pointers.

● Automatic bound checks for slices and arrays.
○ Negative indices are forbidden, avoiding a whole class of errors.

○ No buffer overflow (unless bug in the language …)

This makes memory corruption *basically* impossible.

Memory safety

func value() *int {

 v := new(int) // allocated on the stack,

// because v doesn’t escape.

 return v

}

func main() { fmt.Println(*value()) }

Stack allocation (important for performance)

func value() *int {

 v := 42 // allocated on the heap,

// because v escapes

 return &v

}

func main() { fmt.Println(*value()) }

Heap allocation (important for correctness)

func main() {

 a := make([]int, 256)

 a[512] = 42 // panic: runtime error: index out of range

}

Bound checks (important for correctness)

Type safety

- Static typing

- Explicit type conversion for numeric types

int64 + int32 // mismatched types int32 and int64

- No unsafe implicit conversions, no automatic type coercion

42 + “hello” // mismatched types int and string

// not “42hello”

- Compile-time but implicit interface satisfaction

v := 42

fmt.Fprintln(v, “hello”)
// cannot use v (type int) as type io.Writer in argument to fmt.Fprintln:

// int does not implement io.Writer (missing Write method)

- Interfaces keep the type of the stored value

var i interface{} = v

i.(string) // panic: interface conversion: interface {} is int, not string

Type safety

Seems surprising, but it has caught more than one bug!

for i, row := range s {

 for j, cell := range row { // cell declared and not used

 cell = i * j

 }

}

Unused variables; the compilation error

● Go doesn’t have exceptions

● Exceptions are banned in C++ code at Google

● The main reason is that exceptions break the linear flow of a

program, causing subtle bugs.

Errors are not exceptional

var mutex sync.Mutex

func withMutex(f func()) {

 mutex.Lock()

 f()

 mutex.Unlock()

}

A subtle bug

A simpler concurrency model makes it easier to implement correct
patterns.

Channels

channel

select

channel

Fragile features of Go

Mutable shared state

var counter int

func ticker() {
for range time.Tick(time.Second) {

log.Printf("counter is %d\n", counter)
}

}

func count(w http.ResponseWriter, r *http.Request) {
counter++

}

func main() {
go ticker()
http.HandleFunc("/count", count)
log.Fatal(http.ListenAndServe(":8080", nil))

}

$ go run main.go
2018/04/26 07:01:13 counter is 0
2018/04/26 07:01:14 counter is 1
…

Mutable shared state

Data race detector to the rescue!

$ go run -race main.go
2018/04/26 07:00:59 counter is 0
==================
WARNING: DATA RACE
Read at 0x000001581488 by goroutine 6:
 main.ticker()
Previous write at 0x000001581488 by goroutine 8:
 main.count()

Mutable shared state: tooling

Nil pointers!

Technically not that bad … but still a source of problems

Nil receivers, nil slices … but also nil maps

http://www.youtube.com/watch?v=ynoY2xz-F8s

Lack of generics (yes I went there)

Monads are a great way to manage error

But without generics they’re quite hard to implement

http://www.youtube.com/watch?v=ouyHp2nJl0I

Similar to exceptions, but used only “exceptionally”

Panic; then recover

func main() {
 defer func() {
 if err := recover(); err != nil {
 // handle err
 }
 }()

doStuff()
}

func main() {

 http.HandleFunc("/", handler)

 log.Fatal(http.ListenAndServe(":8080", nil))

}

func handler(w http.ResponseWriter, r *http.Request) {

 panic("boo!")

}

panic

2018/04/18 11:37:40 http: panic serving [::1]:56732: boo!

goroutine 5 [running]:

net/http.(*conn).serve.func1(0xc420098820)

 /Users/francesc/go/src/net/http/server.go:1726 +0xd0

panic(0x12387a0, 0x12cdb70)

 /Users/francesc/go/src/runtime/panic.go:505 +0x229

main.handler(0x12d1800, 0xc420134000, 0xc42011e000)

 /Users/francesc/src/github.com/campoy/samples/recover/server.go:14 +0x39

net/http.HandlerFunc.ServeHTTP(0x12b0220, 0x12d1800, 0xc420134000, 0xc42011e000)

 /Users/francesc/go/src/net/http/server.go:1947 +0x44

net/http.(*ServeMux).ServeHTTP(0x140a3e0, 0x12d1800, 0xc420134000, 0xc42011e000)

 /Users/francesc/go/src/net/http/server.go:2337 +0x130

net/http.serverHandler.ServeHTTP(0xc42008b2b0, 0x12d1800, 0xc420134000, 0xc42011e000)

 /Users/francesc/go/src/net/http/server.go:2694 +0xbc

net/http.(*conn).serve(0xc420098820, 0x12d1a00, 0xc42010a040)

 /Users/francesc/go/src/net/http/server.go:1830 +0x651

created by net/http.(*Server).Serve

 /Users/francesc/go/src/net/http/server.go:2795 +0x27b

$ go run server.go

func main() {

 http.HandleFunc("/", handler)

 log.Fatal(http.ListenAndServe(":8080", nil))

}

func handler(w http.ResponseWriter, r *http.Request) {

 go panic("boo!")

}

panic

panic: boo!

goroutine 8 [running]:

panic(0x12387e0, 0xc420010b90)

 /Users/francesc/go/src/runtime/panic.go:554 +0x3c1

runtime.goexit()

 /Users/francesc/go/src/runtime/asm_amd64.s:2361 +0x1

created by main.handler

 /Users/francesc/src/github.com/campoy/samples/recover/server.go:14 +0x64

exit status 2

$ go run server.go

Giving up on Robustness

No programming language is
robust when the CPU is on fire

Well, actually: Erlang

Six rules:

1. Isolation

2. Concurrency

3. Failure detection

4. Fault Identification

5. Live Code Upgrade

6. Stable Storage

infoq.com/presentations/self-heal-scalable-system

Systems that Run Forever Self-heal and Scale

https://www.infoq.com/presentations/self-heal-scalable-system

I - Isolation

II - Concurrency

III - Failure Detection

IV - Fault Identification

V - Live Code Upgrade

VI - Stable Storage

“Let it crash”

Erlang Go
Isolation

Concurrency

Failure Detection

Fault Identification

Live Code Upgrade

Stable Storage

Erlang vs. Go

A new hope

I - Isolation

● Containers

● Namespaces

● Multiple nodes

● Multiple clusters /
federation

II -
Concurrency

● Go’s concurrency is great

● Extra Parallelism via
replication

○ Replica controllers

III - Failure
Detection

● Heartbeats (probes)

● Automated Monitoring

● Restart Policies

IV - Fault
Identification ● Logs (but who reads them)

● /dev/termination-log

● Liveness Probes

● Readiness Probes

● Live Rolling Update

V - Live Code
Upgrade

Kubernetes Rolling Update

VI - Stable
Storage

● Not necessarily part of the
system

○ Etcd
○ SQL databases
○ etc

- What does it mean to be robust?

- Robust features of Go

- Fragile features of Go

- Giving up

- Well, actually: Erlang

- A new hope

Conclusion

Erlang Go
Isolation

Concurrency

Failure Detection

Fault Identification

Live Code Upgrade

Stable Storage

Erlang vs. Go

Erlang+BEAM Go+K8s
Isolation

Concurrency

Failure Detection

Fault Identification

Live Code Upgrade

Stable Storage

Erlang vs. Go

Kubernetes isn’t
revolutionary

Kubernetes isn’t
revolutionary

for those that know BEAM

Thanks!

@maria_fibonacci @miriampena

Thanks!

Francesc Campoy

@francesc
francesc@sourced.tech

