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Exploring StackOverflow Data 
Evelina Gabasova

13:00-13:45 
Developing a ML model 
Kevin Tsai
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Phil Winder
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Housekeeping rules

• Sessions are 45 minutes, including questions 

• You can ask questions through the GOTO app 

• The track host will read questions at the end of the presentation



GOTO Guide



GOTO Guide

Select Chicago on the Wheel

Find “Rate Session” in the menu



Click to ask question 
and rate the session
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Who is this talk for?



What is Machine Learning?
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Linear Regression



The goal of linear regression

https://eli.thegreenplace.net/2016/linear-regression/ 



Linear regression without ML



Linear regression without ML

https://en.wikipedia.org/wiki/Linear_regression#/media/File:Linear_regression.svg 

https://en.wikipedia.org/wiki/Linear_regression#/media/File:Linear_regression.svg


Linear regression with ML

https://eli.thegreenplace.net/2016/linear-regression/ 



Machine Learning intuitions



Machine Learning is not a silver bullet 🔫



ML is just another tool in the toolbox 🛠



5 intuitions

1. MLaaS vs Open Source 
2. Image recognition of complex objects 
3. Vulnerabilities 
4. Imbalanced datasets 
5. Human bias
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What’s feasible with MLaaS?



Trump2Cash

https://github.com/maxbbraun/trump2cash



2) Recognising complex objects



Banana



Apple



Banana

https://gist.github.com/yrevar/
942d3a0ac09ec9e5eb3a 

https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a


Apple - Granny Smith



Norfolk terrier

https://www.akc.org/dog-breeds/norfolk-terrier/



Norwich Terrier

http://www.akc.org/dog-breeds/norwich-terrier/



3) Vulnerabilities



Previous IT vulnerabilities

https://xkcd.com/327/



Neural Networks can easily be fooled

A. Nguyen, J. Yosinski, J. Clune. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images. 2015.
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Adversarial attack

+

Panda 
57.7% confidence

I. J. Goodfellow, J. Shlens, C. Szegedy. Explaining and Harnessing Adversarial Examples. 2015.
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Potential impact of adversarial attack
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4) Imbalanced datasets
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https://itunes.apple.com/app/not-hotdog/id1212457521

https://itunes.apple.com/app/not-hotdog/id1212457521


https://en.wikipedia.org/wiki/Hot_dog



Not Hotdog

https://medium.com/@timanglade/how-hbos-silicon-valley-built-not-hotdog-with-mobile-tensorflow-keras-react-native-ef03260747f3
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Not Hotdog
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5) Human bias



https://quickdraw.withgoogle.com/

https://quickdraw.withgoogle.com/


https://www.youtube.com/watch?v=59bMh59JQDo









http://www.tri.global/research/ 
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Key-takeaways



Key-takeaways

1. Use MLaaS to get quick wins. Switch to 
Open Source when necessary 

2. If a human can classify an image, then an 
ML model can as well 

3. Be careful of introducing your own biases 
in your data



Thank You
Stefan Veis Pennerup 

svp@trifork.com

mailto:svp@trifork.com





