-) >Real Logic

ACCELERATING SOFTWARE

Cluster Consensus
When Aeron Met Raft

Martin Thompson - @mjpt777

v
x‘;
LN B

1. .=+ ;
AR
| ‘b ?INHII!.’

I =
< Yo

N
rusenix N -y —
P s p————
ASSOCIATION A - b— Z/;’/

(v 48
I .l
~

Simple Testing Can Prevent Most Critical Failures:
An Analysis of Production Failures in Distributed
Data-Intensive Systems

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, and Michael Stumm, University of Toronto

https://www.usenix.org/conference/osdil4/technical-sessions/presentation/yuan

What does “Consensus’ mean?

conesenesus

noun \ ken-'sen(t)-sas \

. general agreement : unanimity

Source: http://www.merriam-welbster.com/

conesenesus

noun \ ken-'sen(t)-sas \

. general agreement : unanimity

. the judgment arrived at by most of those
concerned

Source : hitp://www.merriam-webster.com/

Consensus on what?

https://raft.github.io/raft.pdf

In Search of an Understandable Consensus Algorithm

(Extended Version)

Diego Ongaro and John Ousterhout
Stanford University

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it is as efficient as Paxos, but its structure is different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for build-
ing practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than

state space reduction (relative to Paxos, Raft reduces the
degree of nondeterminism and the ways servers can be in-
consistent with each other). A user study with 43 students
at two universities shows that Raft is significantly easier
to understand than Paxos: after learning both algorithms,
33 of these students were able to answer questions about
Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [29, 22]), but it has several novel features:

e Strong leader: Raft uses a stronger form of leader-

ship than other consensus algorithms. For example,

https://www.cl.cam.ac.uk/~ms705/pub/papers/2015-osr-raft.pdf

Raft Refloated: Do We Have Consensus?

Heidi Howard Malte Schwarzkopf

Anil Madhavapeddy Jon Crowcroft

University of Cambridge Computer Laboratory
first.last@cl.cam.ac.uk

ABSTRACT

The Paxos algorithm is famously difficult to reason about and even
more so to implement, despite having been synonymous with dis-
tributed consensus for over a decade. The recently proposed Raft
protocol lays claim to being a new, understandable consensus algo-
rithm, improving on Paxos without making compromises in perfor-
mance or correctness.

ation ought to be far easier than with Multi-Paxos. Our study in
this paper evaluates the claims about Raft made by its designers.
Is it indeed easily understandable, and can the encouraging perfor-
mance and correctness results presented by Ongaro and Ousterhout
be independently confirmed?

In the endeavour to answer this question, we re-implemented
Raft in a functional programming language (OCaml) and repeat the

A

Raft in a Nutshell

Roles

Follower Candidate I

RPCs

1. RequesiVote RPC

Invoked by candidates to gather votes

2. AppendEntries RPC

Invoked by leader to replicate and heartbeat

Safety Guarantees

» Election Safety
 Leader Append-Only
 Log Matching
 Leader Completeness
- State Machine Safety

Monotonic Functions

Version all the things!

Clustering Aeron

Is it Guaranteed Delivery™ ?7??

What is the “Architect” really looking for?
The Architect

BUILDING GREATER LIESy"» !
— FOR THE GREATER GOOD
.
o

—

——
S
*‘ 0

—
s 1 Py nad! ~

. nr'. o on®™
- » » . ‘
L\ V 1AL .
S— . » - - - 9

!

—
>
.

» N ——
L o ."..‘ ‘=
v " P

S s »
L ‘,v » e !."V- 5

Need o know...

“Guaranteed Processing™”

Client Client Client Client

Service

Client Client Client Client

Service

Client Client Client Client

Consensus |} Consensus
Module Module

Service Service

Client Client Client Client

Consensus |} Consensus I Consensus
Module Module Module

Service Service Service

NIO Pain!

Do servers crash?

FileChannel channel = null;
try
{
channel = FileChannel.open(directory.toPath())
}
catch (final IOException ignore)
{
}

if (null !'= channel)
{

channel. force (true) ;

FileChannel channel = null;
try
{
channel = FileChannel.open(directory.toPath())
}
catch (final IOException ignore)
{
}

if (null !'= channel)
{

channel. force (true) ;

FileChannel channel = null;
try
{
channel = FileChannel.open(directory.toPath())
}
catch (final IOException ignore)
{
}

if (null !'= channel)
{

channel. force (true) ;

Directory Sync

Files.force(directory.toPath(), true);

Performance

Let’s consider an
RPC design approach

Client Client Client Client

Consensus |} Consensus I Consensus
Module Module Module

Service Service Service

Client Client Client Client

Consensus |} Consensus I Consensus
Module Module Module

Service Service Service

Client Client

Client Client

Consensus

Module l

Service

Consensus |}
Module

I Consensus
Module

Service Service

Client Client

Client

Client

Consensus Aemmmmal Consensus
Module Module

I Consensus
Module

Service Service Service

Client Client

Client

Client

Consensus Aemmmmal Consensus
Module l Module

I Consensus
Module

Service Service Service

Client Client

Client

Client

Consensus |}
Module

Consensus mmmmmd Consensus
Module Module

Service Service Service

Client Client

Client

Client

Consensus |}
Module

Consensus mmmmmd Consensus
Module Module

Service Service Service

Client Client

Client

Client

Consensus |}
Module

Consensus mmmmmd Consensus
Module l Module

Service Service Service

Client Client

Client Client

Consensus
l Module

Consensus |}
Module

I Consensus
Module

Service

Service

Service

Concurrency and parallelism
with Replicated State Machines?

1. Parallel is the opposite of Serial
2. Concurrentis the opposite of Sequential
3. Vector is the opposite of Scalar

— John Gustafson

Instruction Pipelining

Time

Instruction Pipelining

Time

Fetch Decode

Instruction Pipelining

Time

Fetch Decode "Execute

Instruction Pipelining

Time

Fetch Decode 'Execute B:GE (=

Instruction Pipelining

Time

Fetch Decode 'Execute B:GE (=
Fetch Decode 'Execute B:G (1 (=

Instruction Pipelining

Time

Fetch Decode 'Execute B:GE (=
Fetch Decode 'Execute B:G (1 (=
Fetch Decode 'Execute B:G (=

Instruction Pipelining

Time

Fetch Decode 'Execute B:GE (=
Fetch Decode 'Execute B:G (1 (=
Fetch Decode 'Execute B:G (=

Fetch Decode 'Execute B:GE (=

Consensus Pipeline

Time

Consensus Pipeline

Time

Order Log

Consensus Pipeline

Time

Order Log Transmit

Consensus Pipeline

Time

Order Log Transmit Eefe]ilylis

Consensus Pipeline

Time

Order Log Transmit Eefe]ilylis M

Consensus Pipeline

Time

Order Log Transmit Eefe]ilylis M
Order Felo- I I {1 ylidl Commit M

Consensus Pipeline

Time

Order Log Transmit Eefe]ilylis M
Felo- I I {1 ylidl Commit M
Order Log Transmit Fefe]ilyli: M

Order

Client Client Client Client

Consensus |} Consensus I Consensus
Module Module Module

Service Service Service

Client

Client

Client Client

Q

Consensus .
Module

Service O Service O Service

Consensus
Module

I Consensus
Module

Client Client Client Client

Consensus |} Consensus I Consensus
Module Module Module

Service Service Service

Client Client

Client Client

Consensus Al Consensus bommmmmdl Consensus

Module /l Module l\ Module

Service Service Service

Client Client

Client Client

I Consensus
4= Module

Consensus) Consensus
Module 1 Module

Service Service Service

Client Client

Client Client

Consensus Al Consensus bommmmmdl Consensus
Module Module Module

Service Service Service

Client Client

Client Client

Consensus Al Consensus bommmmmdl Consensus

Module /l Module l\ Module

Service Service Service

Client Client

Client Client

I Consensus
4= Module

Consensus) Consensus
Module 1 Module

Service Service Service

Client Client

Client Client

Consensus Al Consensus bommmmmdl Consensus
Module Module Module

Service Service Service

NIO Pain!

ByteBuffer byte[] copies

ByteBuffer byteBuffer = ByteBuffer.allocate(64 * 1024);

byteBuffer.putlInt (index, wvalue);

ByteBuffer byte[] copies

ByteBuffer byteBuffer = ByteBuffer.allocate(64 * 1024);

byteBuffer.putBytes (index, bytes);

ByteBuffer byte[] copies

How can Aeron help?

Message Index => Byte Index

Multicast, MDC, and Spy
based Messaging

Counters
=>
Bounded Consumption

Batching — Amortising Costs

100%

1

90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
0% -

Average overhead
per item or operation
in batch

10 15 20

Batching — Amortising Costs

100%

2

90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
0% -

« System calls

 Network round ftrips

* Disk writes

« Expensive computations

10 15 20

Interesting Features

Timers

All state must enter the system
as a message!

Timers

public void foo ()
{

// Decide to schedule a timer

cluster.scheduleTimer (correlationId, cluster.timeMs() + TimeUnit.SECONDS.toMillis(5));

public void onTimerEvent (final long correlationId, final long timestampMs)

{

// Look up the correlationId associated with the timer

Timers

public void foo ()
{

// Decide to schedule a timer

cluster.scheduleTimer (correlationId, cluster.timeMs() + TimeUnit.SECONDS.toMillis(5)) ;

public void onTimerEvent (final long correlationId, final long timestampMs)

{

// Look up the correlationId associated with the timer

Timers

public void foo ()
{

// Decide to schedule a timer

cluster.scheduleTimer (correlationId, cluster.timeMs() + TimeUnit.SECONDS.toMillis(5));

public void onTimerEvent (final long correlationId, final long timestampMs)

{

// Look up the correlationId associated with the timer

Back Pressure and Stashed Work

Back Pressure

public ControlledFragmentAssembler.Action onSessionMessage (
final DirectBuffer buffer,
final int offset,
final int length,
final long clusterSessionId,
final long correlationId)

final ClusterSession session = sessionByIdMap.get(clusterSessionId) ;
if (null == session || session.state() == CLOSED)
{

return ControlledFragmentHandler.Action.CONTINUE;

final long nowMs = cachedEpochClock.time() ;
if (session.state() == OPEN && logPublisher.appendMessage (buffer, offset, length, nowMs))
{

session.lastActivity (nowMs, correlationId)

return ControlledFragmentHandler.Action.CONTINUE;

return ControlledFragmentHandler.Action.ABORT;

Back Pressure

public ControlledFragmentAssembler.Action onSessionMessage (
final DirectBuffer buffer,
final int offset,
final int length,
final long clusterSessionId,
final long correlationId)

final ClusterSession session = sessionByIdMap.get(clusterSessionId) ;
if (null == session || session.state() == CLOSED)
{

return ControlledFragmentHandler.Action.CONTINUE;

final long nowMs = cachedEpochClock.time() ;
if (session.state() == OPEN && logPublisher.appendMessage (buffer, offset, length, nowMs))
{

session.lastActivity (nowMs, correlationId)

return ControlledFragmentHandler.Action.CONTINUE;

return ControlledFragmentHandler.Action.ABORT;

Back Pressure

public ControlledFragmentAssembler.Action onSessionMessage (
final DirectBuffer buffer,
final int offset,
final int length,
final long clusterSessionId,
final long correlationId)

final ClusterSession session = sessionByIdMap.get(clusterSessionId);
if (null == session || session.state() == CLOSED)
{

return ControlledFragmentHandler.Action.CONTINUE;

final long nowMs = cachedEpochClock.time() ;
if (session.state() == OPEN && logPublisher.appendMessage (buffer, offset, length, nowMs))
{

session.lastActivity (nowMs, correlationId) ;

return ControlledFragmentHandler.Action.CONTINUE;

return ControlledFragmentHandler.Action.ABORT;

Back Pressure

public ControlledFragmentAssembler.Action onSessionMessage (
final DirectBuffer buffer,
final int offset,
final int length,
final long clusterSessionId,
final long correlationId)

final ClusterSession session = sessionByIdMap.get(clusterSessionId) ;
if (null == session || session.state() == CLOSED)
{

return ControlledFragmentHandler.Action.CONTINUE;

final long nowMs = cachedEpochClock.time() ;
if (session.state() == OPEN && logPublisher.appendMessage (buffer, offset, length, nowMs))
{

session.lastActivity (nowMs, correlationId)

return ControlledFragmentHandler.Action.CONTINUE;

return ControlledFragmentHandler.Action.ABORT;

Log Replay and Snapshots

Log Replay and Snapshots

Distributed File System?

Log Replay and Snapshots

Distributed File System?

Aeron Archive
Recorded Streams

Multiple Services on the
same siream

Client Client Client Client

Consensus |} Consensus I Consensus
Module Module Module

Service Service Service

Client Client Client Client

Consensus |} Consensus I Consensus
Module Module Module

Service Service Service

NIO Pain!

MappedByteBuffer DirectByteBuffer

MappedByteBuffer DirectByteBuffer

DirectByteBuffer MappedByteBuffer

In Closing

What's the Roadmap?

Do epic shit,
or die trying.

Questions?

https://github.com/real-logic/aeron
Twitter: @mjpt777

“A distributed system is one in which the failure
of a computer you didn't even know existed
can render your own computer unusable.”

- Leslie Lamport

https://github.com/real-logic/aeron

