
Michael Irwin - April 25, 2018 - GOTO Chicago

#dinoselfie

Photo credit: https://observationdeck.kinja.com/want-to-join-a-dinosaur-dig-this-summer-you-can-1584367030

1. Build the app

2. Put it in a pipeline

3. Build the runtime

4. Test the app

 … all without changing a single line of code in the app itself!

● App needs to allow external configuration
○ Environment variables, external config files, etc.
○ Obviously, secrets should NEVER be baked into your images

● Each step’s completion should be considered a success
○ You don’t have to complete all of them to gain benefits

● Simple webapp that displays specials at campus dining centers

● Admins can log in and schedule upcoming specials
○ Global admins can modify all
○ Local admins can modify only specific dining centers

1. Build the app

2. Put it in a pipeline

3. Build the runtime

4. Test the app

● Goal - be able to reliably reproduce builds for the app itself

● Things to think about…
○ What build tools are needed?
○ What versions for those tools are known to work?
○ Are dependencies pinned to specific versions?

● Some tips…
○ Use docker-compose to make it easy to launch
○ Consider mounting artifact repos to enable faster builds
○ Consider mounting output back onto host

1. Build the app

2. Put it in a pipeline

3. Build the runtime

4. Test the app

● Goal - enable automated builds to produce images upon code changes

● Things to think about…
○ Use “Pipeline as Code” whenever possible
○ Use whatever is available to you. Don’t run your own build server if you

don’t have to
○ Don’t make your build scripts so complicated you can’t run it on your own

machine
○ If your build system allows it, save the output from Step 1 as an artifact

1. Build the app

2. Put it in a pipeline

3. Build the runtime

4. Test the app

● Goal - be able to produce a Docker image that contains everything

needed to run the app, excluding external services

● Things to think about…
○ What server is being used? What about it’s runtime?
○ What libraries/modules/extensions are added?
○ Make note of things that would vary between apps (config, etc.) to identify

what’s universal across apps and what changes

● Once you can build the runtime, update your build pipeline!

1. Build the app

2. Build the runtime

3. Put it in a pipeline

4. Test the app

● Goal - be able to spin up an isolated environment to run end-to-end

automated tests of the app

● Things to think about…
○ Use the right tool/language for the job - these tests don’t have to be

written in the same language/framework as the app
○ What external services does your app depend on? Do you have images for

them?
○ What mock data do you need to test each scenario?

● Dependencies on external services run by other units
○ ED contains people and group memberships (used for authorization)

Web Application
(Tomcat 7.x with Java 7)

Central
Authentication
Service (CAS)

Enterprise Directory
(LDAP)

MySQL Database

● Tied to whatever capabilities service providers give us
○ We can only use data that exists in the directory

● How do we authenticate in an automated way?
○ If using a real SSO service, don’t want to include credentials in source

● Don’t test (obviously scary!)

● Test manually
○ Works, but time and people intensive
○ If on faster release cycles, repetition => fatigue => missed regressions

● Add abstraction layers
○ Instead of using people from the directory, use “local” people
○ Adds complexity to the codebase
○ Dummy data = no risk of exposure/data loss

Reverse Proxy
cas.internal
app.internal

proxy

CheapChomp
Application

CAS (SSO)

LDAP
(Enterprise Directory)

MySQL Database

app

Selenium Driver
with Chrome

Test Code

test

● We want to start our entire application (good use for Docker Compose)

● Using the --exit-code-from flag, we get...
○ A stack that tears down when the test container completes
○ The exit code for docker-compose is the exit code of the test container

docker-compose -f docker-compose-tests.yml -p cheapchomptests up \
--force-recreate --build --exit-code-from bdd

1. Build the app

2. Put it in a pipeline

3. Build the runtime

4. Test the app

 … all without changing a single line of code in the app itself!

Photo credit: https://www.flickr.com/photos/armchairbuilder/6196473431

● As an example, by simply changing the FROM command in our

Dockerfile, we can move our app to Tomcat 8

● The tests we wrote in the previous step will let us know if this is safe!

tomcat-with-cas:7.0.85-jre7 tomcat-with-cas:8.0.50-jre7

CheapChomp WAR fileCheapChomp WAR file

● Goal - be able to migrate our app to newer/updated runtimes

● Things to think about…
○ Everything can be changed! Runtime, build tools, app dependencies, etc.
○ But… make one change at a time
○ Make minimal (if any) changes to your E2E tests to assure their validity

● This is where the true power comes!

● My app itself has a vulnerability!

● Options are to…
○ Update the library being used (if possible)
○ Raise the bar

● Update our docker-compose to include read_only: true

● For any file locations that do need to update, use tmpfs
○ Files are only stored in memory (so be careful of large files)
○ Container stops = changes gone

● This makes the filesystem of the individual container read-only
○ You are still subject to SQL injections, improper data exposure, etc.

● This is NOT meant to be a catch-all fix
○ Each vulnerability needs to be evaluated and mitigated appropriately

● What is meant to be is a raising of the bar, another tool, another

experiment for you to try
○ Other experiments include using apparmor, seccomp, etc.

● With UCP, we finally have visibility of what’s running where
○ Our Security Office is obviously happy about that

● We modernized our “dino app” by…
○ Containerizing our build process
○ Putting it into a build pipeline
○ Containerizing the entire runtime
○ Add tests to exercise our app

● That allows us to now…
○ Experiment with new runtimes, updated dependencies, or new bases
○ Allow our app to run read-only
○ Have full visibility of all apps we’re running

Without changing a single line of code in the app itself!

