Shaping the future of Java, Faster

Georges Saab

Vice President, Java Platform Group
Oracle, Corp

Twitter: @gsaab

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Communication Community Collaboration Contribution
Java Magazine Java User Groups Java Champions OpenlJDK
250K+ subscribers 350+ worldwide 150+ worldwide 470 community
participants

4, Javar

<— SoACe Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 3

> 4

#1 12 Million 38 Billion 21 Billion
Programming Developers Active Cloud Connected
Language Run Java Virtual Machines Virtual Machines

4, Javar

P SoACe Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

© @ @ @

Open Evolving Nimble Scalable

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 5

Java SE is #1 Runtime in the Cloud

* #1 Deployment runtime on AWS
and Google App Engine and #3 on
MS Azure

* Java Runtime is the foundation of
the Cloud laaS, PaaS and SaaS

. Using

. Primary Host

Amazon Web Services Microsoft Azure Google Cloud Platform

Source: 2015 Vision Mobile

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Openl)JDK Platform Investments

* Security is our #1 priority

* Improving Java developer productivity and compatibility
(Amber, Panama, Loom)

* Increasing density (Valhalla)

* Improving startup time (AOT, App CDS)

* Improving predictability (zGC, Shenandoah)

* Simplifying serviceability and profiling (JFR, JMC)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

The New Release Model

No more limousines, think trains!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Previous JDK Release Model

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15
I I I I I I I I
I I I I I I I I

4, Javar

<— SR Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 9

Previous JDK Release Model

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 10

Previous JDK Release Model

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 11

Previous JDK Release Model

Y1l Y2 Y3 Y4 Y5 Y6 Y7

Su20 8ud40 8u6e0
10 10.1 10.2 10.3 _

11 11.111.2 11.3

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

New JDK Release Model — Feature releases every 6 months

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

New JDK Release Model

Y4 Y5

Y6

Y7

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

14

New JDK Release Model - LTS Releases

New JDK Release Model - LTS Every 3 years

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

I
I
M o
10
N 11 (18.9 LTS)
M 12
M 13
i
B 15
16
N 17 (21.9 LTS)
M 13
M 19

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

New JDK Release Model — Starting with JDK 9

18 19 20 21 22 23 24 25 26 27 28 29 30 31 ‘32
| | | | | | | | | | | | | | |

JDK 6
JDK 7

K
10
N 11 (18.9LTS)
M 12
M 13
i
M 15
16
_17 (21.9) LTS

Copyright © 2 Ora its affilia All rights

Oracle JDK & OpenJDK

18 19 20 21 22 23 24 25 26 27 28 29 30 31 ‘32
| | | | | | | | | | | | | | |

JDK 6
JDK 7
JDK 8 _ Oracle JDK - BCL

- 9 _ Oracle JDK - OTN

M 12
M 13
14
M 15
16
([I7RIomS]

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

18

New JDK Release model

JDK 6
JDK 7 _ Oracle JDK - BCL
S IDK'8 I - ok O

10 I OpenioK - GPL

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 19

New Openl]DK binaries

Moving Java Forward Faster and more open! (Opener?)

Accelerating the JDK release cadence

mark.reinhold at oracle.com mark reinhold at oracle.com
Wed Sep 6 14:49:28 UTC 2017

Over on my blog today I've argued that Java needs to move forward faster.
To achieve that I've proposed that the Java SE Platform and the JDK shift
from the historical feature-driven release model to a strict, time-based
model with a new feature release every six months, update releases every
quarter, and a long-term sSupport release every three years:

https://mreinhold.org/blog/forward-faster

Here are some initial thoughts on how we might implement this proposal
here in the OpenJDK Community. Comments and questions about both the
proposal and its implementation are welcome on this list.

- After JDK 9 we'll open-source the commercial features in order to
make the OpenJDK builds more attractive to developers and to reduce
the differences between those builds and the Oracle JDK. This will
take some time, but the ultimate goal is to make OpenJDK and Oracle
JDK builds completely interchangeable.

- Finally, for the long term we'll work with other OpenJDK contributors
to establish an open build-and-test infrastructure. This will make
it easier to publish early-access builds for features in development,
and eventually make it possible for the OpenJDK Community itself to
publish authoritative builds of the JDK.

Oracle will now produce OpenlJDK builds

The new OpenlJDK builds will be licensed under GPL V2

GNU General Public License Version 2 with Class Path Exception (GPL 2 with CPE)

Oracle will open source commercial features

Oracle will work with other OpenJDK contributors to
make the community infrastructure complete, modern
and accessible

URL: http://mail.openjdk.java.net/pipermail/discuss/2017-September/004281.html

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 21

http://openjdk.java.net/census
http://mail.openjdk.java.net/pipermail/discuss/2017-September/004281.html

From Oracle JDK to Open)JDK from Oracle

4 Java

g_../ ORACLE

= Open]DK

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

What Is Being Open-Sourced in Java

= Java Mission Control

= Monitor and manage Java applications with minimal performance overhead.

= Java Flight Recorder

= Collects diagnostic and profiling data about a running Java application.

= Application Class Data Sharing

= Enables you to place classes from the standard extensions directories and the application class path in the shared archive.

= Java Usage Tracker

= Tracks how the JRE’s are being used in your systems.

* Infrastructure

4, Javar

<— SO Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

23

Java 9

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

24

00 / e JDK O o “‘.\+
‘ €) O | openjdk.java.net/projects/jdk9/ <] IQ Search]ﬁ B $ A 4 =

Open)DK ok 9

J D K 9 I"nzg‘lll!?"; FAQ The goal of this Project is to produce an open-source reference implementation of
|l

Contributing the Java SE 9 Platform defined by JSR 379 in the Java Community Process.
Sponsoring
Developers' Guide The schedule and features of this release are proposed and tracked via the JEP
:\;aciliv:,gv_:(i_sts Process, as amended by the JEP 2.0 proposal.
N 1K

Byl Ci
ngaavl"s ensus Schedule
JEP Process 2016/05/26 Feature Complete
2016/12/22 Feature Extension Complete

* Released September 2017 e e

e e a S e e e e r Bundles (6) 2017/02/09 All Tests Run
Groups 2017/02/16 Zero Bug Bounce
(overview)
. 2D Graphics 2017/03/16 Rampdown Phase Two

Adopti

(] La St M aJ O r Re | e a S e A\,}’T"“"" 2017/06/22 Initial Release Candidate
Buld 2017/07/06 Final Release Candidate
Compatibility &

Specification 2017/09/21 General Availability

Review

— 100+ features e statue

Core Libraries

gozsem;ng Board We are now in the final phase of the release, in which we aim to fix only those bugs
[} 0f
|ntenfationa”zauon that are truly showstoppers to the success of the release. Please see the Release
JMX Candidate page for details.
Members
Networking
NetBeans Projects Qulck links
Porters
fslua'itv Release-Candidate Phase [candidate bugs]
Sszirc';yabmty Rampdown Phase Two [candidate bugs]
gsv‘::: Rampdown Phase One [candidate bugs]
Wetf Bug-deferral process (RDP 1 and later) [pending requests]
:;'V"e‘f:;:) Fix-request process (RDP 2 and later) [pending requests]
Amber Feature-Complete extension request process [pending requests]
Annotations Pipeline

2.0
Audio Engine Features
Build Infrastructure
Caclacavallo 102: Process API Updates
Closures

110: HTTP 2 Client

M O re | nform atIO n O n a ny J E P . Ez?”e . 143; Improve Contended Locking

Common VM

. . . Interface 158: Unified JVM Logging
http://openjdk.java.net/jeps/{JEP#} e 165: Compiler Control
Duke 193: Variable Handles
F Scal
o ikt 197: Segmented Code Cache
graalhv et 199: Smart Java Compilation, Phase Two
HarfBuzz Integration 200: The Modular JDK

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

264: Platform Logging API and Service
265: Marlin Graphics Renderer

266: More Concurrency Updates

267: Unicode 8.0

268: XML Catalogs

269: Convenience Factory Methods for Collections
J D K 9 270: Reserved Stack Areas for Critical Sections
271: Unified GC Logging

272: Platform-Specific Desktop Features

273: DRBG-Based SecureRandom Implementations

274: Enhanced Method Handles

275: Modular Java Application Packaging

276: Dynamic Linking of Language-Defined Object Models

277: Enhanced Deprecation
278: Additional Tests for Humongous Objects in G1

279: Improve Test-Failure Troubleshooting
¢ Re I ea Se d Se pte m b e r 2 O 1 7 280: Indify String Concatenation
281: HotSpot C++ Unit-Test Framework
282: jlink: The Java Linker
. 283: Enable GTK 3 on Linux
o La St M aJ or Re | ease 284: New HotSpot Build System
285: Spin-Wait Hints
287: SHA-3 Hash Algorithms
L 100+ fe at ures 288: Disable SHA-1 Certificates
289: Deprecate the Applet API
290: Filter Incoming Serialization Data
291: Deprecate the Concurrent Mark Sweep (CMS) Garbage Collector
292: Implement Selected ECMAScript 6 Features in Nashorn
294: Linux/s390x Port
295: Ahead-of-Time Compilation
297: Unified arm32/armé64 Port
298: Remove Demos and Samples
299: Reorganize Documentation

Milestone definitions

The milestone definitions for JDK 9 are the same as those for |DK 8, with the
addition of:

= Feature Extension Complete — The date by which JEPs and small
enhancements that have been granted extensions via the FC extension-
request process must be integrated into the master forest.

M ore | nfO rm at | onona ny .J E P . = |nitial Release Candidate — The date on which the first release candidate is
. . . built and submitted for testing.
http://openjdk.java.net/jeps/{JEP#}

Last update: 2017/6/26 20:57 UTC

© 2017 Oracle Corporation and/or its affiliates
Terms of Use - License: GPLv2 - Privacy - Trademarks

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Project Jigsaw
Modularize the Java Platform

javase.ee

* JEP 261: Module System
* JEP 200: The Modular JDK
* JEP 201: Modular Source Code

java.co

* Plus
— JEP 260: Encapsulate Most Internal APIs
— JEP 282: jlink: The Java Linker

““““““““““““““““““““““““““““““ ;Java |

java.httpclient java.xml

java,

4, Javar

‘ SO Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

- java.se iavanmN “““““““““““““““““

java.compact3 lavaxm\bmﬂ

.compactl Java.rm| Java securi ysasl

..............

0gging |ava scripting €

jdk Jocal

base

Java SE Modules

* Modularize your application

java.security.sasl

java.se

java.se.ee

TN

java.xml.ws

java.xml.crypto

java.jnlp

java.corba

)}

java.

sgl.rowset

\4

AN

java.xml.bind

N

java.destkop

java.sql

java.security.jgss

java.prefs

N

java.naming

java.scripting

java.compiler

java.transfer

java.instrument

java.logging

java.smartcardio

—

java.transaction

java.activation

\

java.xml

java.management.rmi

] |

java.rmi

java.base

java.xml.ws.annotation

/

java.management

/

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Java SE Modules

java.security.sasl

java.se

java.se.ee -\

company.applica

tion\

‘\ java.xml.ws

java.jnlp

java.corba

java.xml.crypto/

Java.xml.bind

java.transaction

java.sql

java.security.jgss

java.prefs

\\ java.compiler

java.naming

java.scripting

java.transfer

java.instrument

java.logging

java.smartcardio

V java.xml
l

java.management.rmi

Y

java.rmi

java.xml.ws.annotation

/

java.management

/

java.base

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Java SE Modules

java.security.sasl

java.security.jgss

\ java.compiler

java.prefs

java.se

java.se.ee

java.xml.crypto/

java.scripting

java.instrument

java.smartcardio

java.rmi

=N

java.xml.ws

java.jnlp

java.corba

Java.xml.bind

java.destkop

S\

N

— 4\"
&

java.transaction

java.management.rmi

java/ml.ws.annotation

/

java.management

/

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Java Custom Runtime

Custom Image
~ 40 Mb

* Includes the
Modular Application

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

JDK 9 Jigsaw Security

Module boundaries enforced by the JVM
* ¢ Encapsulate implementation--internal classes inside modules

®* — Share them with other implementation modules only as needed
* Massive maintainability improvement
e Simpler compatibility upgrade path

 We and You can now hide and preclude access to unsupported internal APIs and
implementation

* Will also significantly improve Security

* Enable developers to create customized runtime that removed unused security
sensitive APIs

4, Javar

<— SR Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 33

Java 9: Ahead of Time (AOT) Java Compiler

* The unification of static and dynamic compilation

— Static compilation — faster startup, lower memory usage, but limited in optimizing code
generation

— Dynamic profiling based compilation — slow startup but optimum code generation

. :\|bew AOT Compiler to statically compile Java classes to native shared
ibraries

— Reduces startup time and improve density to close the gap against native service
* Compile Java packages to native shared libraries

* JVM was modified to load native shared libraries on startup

— JVM internal structures, which describe compiled code, are split to describe compiled code
in code cache and in a shared library

— AOT compiled code is dynamically linked to Java methods after its class is initialized

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 34

New world, new deployment option
Containers

In a World of Containers We Expect...

* Safety and security becoming increasingly more important

* Sprawl
— Many instances
— Mix of different applications
— Heterogeneous machines
— Heterogeneous container configurations

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

36

Java in a World of Containers

Java’s characteristics make it ideal for a container environment

* Managed language/runtime

* Hardware and operating system agnostic

 Safety and security enforced by JVM

* Reliable: Compatibility is a key design goal

* Runtime adaptive: JVM ensures stable execution when environment changes

* Rich ecosystem

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 37

Java in a World of Containers

Java’s characteristics make it ideal for a container environment

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

38

New world, new deployment option
Modern Browsers

Java on the Browser: 3 Way-conversation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Bring-your-own-Java: More control, less surprises

$, &
p— pe——
Javar Javar
3uldl 3ul51

Bring-your-own-Java: More control, less surprises

JEP 282: jlink: The Java Linker

tools / jlink

* Create a tool that can assemble and optimize a set of modules and their
dependencies into a custom run-time image as defined in JEP 220. Define a
plugin mechanism for transformation and optimization during the assembly
process, and for the generation of alternative image formats

* Create a custom runtime optimized for a single program

* JEP 261 defines link time as an optional phase between the phases of
compile time and run time. Link time requires a linking tool that will
assemble and optimize a set of modules and their transitive dependencies
to create a run-time image or executable

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 43

Using Jlink

Using Jlink

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

45

Process APl Updates
HTTP/2 Client
Improve Contended Locking
Unified JVM Logging
Compiler Control
Variable Handles
Segmented Code Cache
Smart Java Compilation, Phase Two
The Modular JDK
Modular Source Code
Elide Deprecation Warnings
on Import Statements
Resolve Lint and Doclint Warnings
Milling Project Coin
Remove GC Combinations Deprecated in JDK 8
Tiered Attribution for javac
Process Import Statements Correctly
Annotations Pipeline 2.0
Datagram Transport Layer Security (DTLS)
Modular Run-Time Images
Simplified Doclet API
jshell: The Java Shell (Read-Eval-Print Loop)
New Version-String Scheme
HTMLS5 Javadoc
Javadoc Search
UTF-8 Property Files
Unicode 7.0
Add More Diagnostic Commands
Create PKCS12 Keystores by Default
Remove Launch-Time JRE Version Selection
Improve Secure Application Performance
Generate Run-Time Compiler Tests

Test Class-File Attributes Generated by javac
Parser API for Nashorn

Linux/AArch64 Port

Multi-Release JAR Files

Remove the JVM Tl hprof Agent

Remove the jhat Tool

Java-Level JVM Compiler Interface

TLS ALPN

Validate JVM Command-Line Flag Arguments
Leverage CPU Instructions for GHASH and RSA
Compile for Older Platform Versions

Make G1 the Default Garbage Collector
OCSP Stapling for TLS

Store Interned Strings in CDS Archives
Multi-Resolution Images

Use CLDR Locale Data by Default

Prepare JavaFX for Modularization

Compact Strings

Merge Selected Xerces Updates into JAXP
BeanInfo Annotations

Update GStreamer in JavaFX/Media
HarfBuzz Font-Layout Engine

Stack-Walking API

Encapsulate Most Internal APIs

Module System

TIFF Image I/0

HiDPI Graphics on Windows and Linux
Platform Logging APl and Service

Marlin Graphics Renderer

More Concurrency Updates

Convenience Factory Methods for Collections
Reserved Stack Areas for Critical Sections

Unicode 8.0

XML Catalogs

Unified GC Logging

Platform-Specific Desktop Features

DRBG-Based SecureRandom Implementations

Enhanced Method Handles

Modular Java Application Packaging

Dynamic Linking of Language-Defined
Object Models

Enhanced Deprecation

Additional Tests for Humongous Objects in G1

Improve Test-Failure Troubleshooting

Indify String Concatenation

HotSpot C++ Unit-Test Framework

jlink: The Java Linker

Enable GTK 3 on Linux

New HotSpot Build System

Spin-Wait Hints

SHA-3 Hash Algorithms

Disable SHA-1 Certificates

Deprecate the Applet API

Filter Incoming Serialization Data

Deprecate the Concurrent Mark Sweep GC

Implement Selected ECMAScript 6 Features

Linux/s390x Port

Ahead-of-Time Compilation

Unified arm32/arm64 Port

Remove Demos and Samples

Reorganize Documentation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Also opened since JavaOne 2017
* Project ZGC

— Scalable low latency garbage collector capable of handling heaps ranging from
gigabytes to terabytes in size, with GC pause times not exceeding 10ms

* OpenJDK Early Access binaries under GPL
— Feature releases (e.g. JDK 9, JDK 10, JDK 11)
— Project-specific binaries e.g. Project Valhalla

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

47

Java 10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

48

JDK 10 — Mar 2018

* First feature release
12 JEPs

(Java Enhancement Proposals)

& c @ @ openjdk.java.net/projects/jdk/10/ e @ % ¥ Q upk10 - N @ &

Open)DK

Open)DK FAQ
Installing
Contributing
Sponsoring
Developers’ Guide
Mailing lists

IRC - Wiki

Bylaws - Census
Legal

JEP Process

JDK 10

This release will be the Reference Implementation of the next version of the
Java SE Platform, as specified by SR 383 in the Java Community Process.

Status

JDK 10 is in the Release-Candidate Phase, in which we're fixing only those bugs
that are absolutely critical to the success of the release. Please see the Release-
Candidate Phase page for process details.

Schedule

Source code

e 2017/12/14 Rampdown Phase One

Groups 2018/01/11 All Tests Run

(overview) 2018/01/18 Rampdown Phase Two

2D Graphics

Adoption 2018/02/08 Initial Release Candidate

ELJ.TL 2018/02/22 Final Release Candidate

Compatibility & . -
‘Specifcation 2018/03/20 General Availability
Review

Compiler Features

Conformance
Core Libraries
Govemning Board

286: Local-Variable Type Inference

Hotspot 296: Consolidate the JDK Forest into a Single Repository
Internationalization

IMX 304: Garbage-Collector Interface

Members 307: Parallel Full GC for G1

Networking

NetBeans Projects
Porters

310: Application Class-Data Sharing
312: Thread-Local Handshakes

Qualit

Ser_uri{y ‘ 313: Remove the Native-Header Generation Tool (javah)
S 314: Additional Unicode Language-Tag Extensions

Swing 316: Heap Allocation on Alternative Memory Devices
e 317: Experimental Java-Based JIT Compiler

Projects .

(overview) 319: Root Certificates

Amber

Annaotations Pipeline
2.0

Audio Engine

Build Infrastructure

322: Time-Based Release Versioning

Last update: 2018/2/9 18:21 UTC

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

S

49

JEP 286: Local-Variable Type Inference

specification / language

* Enhance the Java Language to extend type inference to declarations of local
variables with initializers

* Restricted to local variables with initializers, indexes in the enhanced for-
loop, and locals declared in a traditional for-loop

* Not available for method formals, constructor formals, method return
types, fields, catch formals, or any other kind of variable declaration

ArrayList<String> list = new ArrayList<String>();

Stream<String> stream = list.stream();

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

JEP 286: Local-Variable Type Inference

specification / language

* Enhance the Java Language to extend type inference to declarations of local
variables with initializers

* Restricted to local variables with initializers, indexes in the enhanced for-
loop, and locals declared in a traditional for-loop

* Not available for method formals, constructor formals, method return
types, fields, catch formals, or any other kind of variable declaration

var list = new ArrayList<String>();

var stream = list.stream();

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

JEP 310: Application Class-Data Sharing

hotspot / runtime

* Extend the existing Class-Data Sharing ("CDS") feature to allow application
classes to be placed in the shared archive

* Reduce footprint by sharing common class metadata across different Java
processes.

* Improve startup time. F/'fst

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Java 11

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

53

JDK 11 — Sep 2018

¢ 4 JEPS ta rgetEd SO < C @ @ openjdk.java.net/project e @ W ¥ | Q search » =

far...
Open)DK JoK 11

o N ew mOdeI Ca I IS for ﬁzgﬁj‘; G This release will be the Reference Implementation of a future version of the Java SE
Contribut Platform, as specified by JSR 384 in the Java Community Process.
JEPS to be targeted Cponaning. P V)) Y
Developers’ Guide
Status
only when ready waiing lsts
IRC - Wikl The development repositories are open for bug fixes, small enhancements, and
feygf;l“’ﬁ Census JEPs as proposed and tracked via the JEP Process.
JEP Process Features
u

Source code JEPs targeted to JDK 11, so far
M ial
B:rr]‘(:jl-llr;f[ﬁ: 309: Dynamic Class-File Constants
Groups 318: Epsilon: An Arbitrarily Low-Overhead Garbage Collector
20 Graphics 320: Remove the Java EE and CORBA Modules
ingp‘-ion 323: Local-Variable Syntax for Lambda Parameters
Build
COmpRtUSEY & Last update: 2018/2/2 03:53 UTC

Specification

Review
Compiler

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. 54

Beyond Java 11

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

55

The Next Big Challenge: Object Data layout

* Java is very good at optimizing code, less so at optimizing data
* Java’s type system gives us primitives, objects, and arrays

* But flexibility is not exactly where we need it

* The big problem: object identity

* Project Valhalla — Value Types

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Improved Java/Native Interoperability

* Big Data Hadoop and Spark are highly dependent on native libraries
* Meanwhile, Java has significant technical debts in support of foreign calls
* Project Panama - provide an easier, safer and faster JNI

* Project Loom — Lightweight thread and continuation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Summary

* The Java platform development on OpenJDK is becoming more open

— Contributing all commercial features (zGC, JFR, AppCDS, etc)
— GPL+CPE build

* The cloud is demanding a faster pace and continuous delivery

— Uptake new Java releases every 6-months!
* Beyond 10, we have a solid technical roadmap

* Let’s continue to innovate and advance the Java SE Platform on OpenJDK together!

Join and become an OpenlDK contributor

https://openjdk.java.net

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

58

