
Security & Trust in
a Services World

Aaron Bedra
Chief Scientist, Jemurai
@abedra
keybase.io/abedra

http://keybase.io/abedra

In the beginning…

Does this change the way
we approach security?

It certainly should!

In fact, it makes it
“easier”

 | Class | Package | Subclass | Subclass | World
 | | |(same pkg)|(diff pkg)|
————————————+———————+—————————+——————————+——————————+————————
public | + | + | + | + | +
————————————+———————+—————————+——————————+——————————+————————
protected | + | + | + | + |
————————————+———————+—————————+——————————+——————————+————————
no modifier | + | + | + | |
————————————+———————+—————————+——————————+——————————+————————
private | + | | | |

+ : accessible
blank : not accessible

With a service architecture
we can draw our

relationships as they truly are

But we’ve got a lot to
consider when it comes

to security

Trust

noun
1.
reliance on the integrity, strength, ability, surety,
etc., of a person or thing; confidence.
2.
confident expectation of something; hope.

Trust != Authentication

Authentication speaks
to identity

But does not address
trust

Some things to get out
of the way

Trust is multivalent

In real life, once you learn
someone’s name, do you trust
them with everything forever?

Of course not!

Our systems shouldn’t
either

Trust is momentary and
depends on context

And most importantly,
it can change

We will talk about
classification later, but

there are also levels of trust

Consider the following

Interesting questions
• Date of last penetration test?

• Vulnerable dependencies?

• Vulnerable container images?

• Known unmitigated findings?

• Deviations in behavior?

We should create layers
of trust based on

information available

This requires a more
comprehensive security

program

Yeah, but what do we
do with it?

If someone you didn’t know
asked you a deeply personal

question, would you answer it?

What about someone you
have known for years?

What if that person
started asking really
strange questions?

Would you alter your
notion of trust?

Let’s pull it back to
technology

We can shift to
momentary trust

More questions?

• Who performed authentication?

• Do they agree you are who you say you are?

• What else do we know about you?

• Based on what we know, to what degree can we
trust you?

{
 "last_penetration_date": "2017-04-26T16:24:44+00:00",
 "open_findings": true,
 "repository": "github.com/company/service",
 "dependency_file": "package.json",
 "vulnerable_dependencies": true,
 "current_container": "registry.local/service/latest",
 "container_vulnerabilities": true,
 "build_status": "failing",
 "classification": "private",
 "service_dependencies": ["sheep", "cheese"],
}

This information can
and will change

Use it to determine if they
meet your criteria for
delivering information

In fact, publish your
requirements as part of
your service definition

Publishing trust
requirements helps prevent

unintended interruptions

Yeah, yeah, that’s nice,
but you’re insane. We

can’t do this!

Good point

I’m not here to convince
you to improve security

I’ll read about you in
the news someday

Please stop thinking
about this as a security

exercise

It’s a design exercise

Because it’s what you do
once you have this that

truly matters

Service Classification

What types of data
pass through a service?

Types of Data
• Public

• PCI

• HIPAA

• PII

• Internal

• Confidential

A service should be classified
by the most sensitive data

that passes through it

A service doesn’t need to
store data to be classified

It just has to have
access to it

How do we record
classifications?

Use a service registry!

apiVersion: v1
kind: Service
metadata:
 name: user-service
 labels:
 classification: private
spec:
 type: LoadBalancer
 ports:
 - port: 8888
 selector:
 app: user

This is a simple example,
but you can plug this
idea into any registry

What do we do with it?

Restrict the flow of data
based on classification

Scenario

The cardholder data
service is classified as

PCI

The profile service is
classified as PII

Should the cardholder
data service return PCI

scoped data?

NO!

It should only pass what it
is allowed to based on

the caller’s classification

Using only a single
interface

This means filtering
responses based on

classification

DEMO

func buildResponse(classification string, user User) User {
 switch classification {
 case "public":
 return User{
 Username: user.Username,
 First: user.First,
 Last: user.Last,
 Email: user.Email}
 case "private":
 return User{
 ID: user.Id,
 Username: user.Username,
 First: user.First,
 Last: user.Last,
 Email: user.Email,
 Password: user.Password}

 }
}

How do we know the
classification of the

caller?

func getServiceClassification(service string) string {
 fmt.Println("Getting classification for", service)
 config, err := rest.InClusterConfig()
 if err != nil {
 log.Fatal(err)
 return "public"
 }

 clientset, err := kubernetes.NewForConfig(config)
 if err != nil {
 log.Fatal(err)
 return "public"
 }

 s, err := clientset.Core().Services(“default")
 .Get(service, metav1.GetOptions{})
 if err != nil {
 log.Fatal(err)
 return "public"
 }

 return s.GetLabels()["classification"]
}

Yeah, but how do we
know the classification of

the caller?

This is where trust
comes into play

Without some level of
authentication this is very

difficult

Or potentially
impossible

You could use JWT

{
 "typ": "JWT",
 "alg": "HS256"
}
{
 "iss": "token-service",
 "service": "frontend",
 "jti": "1e7e906b-9c78-47dd-bc50-4b1d77ccab55",
 "iat": 1524758983,
 "exp": 1524762583
}

{
 "typ": "JWT",
 "alg": "HS256"
}
{
 "iss": "token-service",
 "service": "frontend",
 "jti": "1e7e906b-9c78-47dd-bc50-4b1d77ccab55",
 "iat": 1524758983,
 "exp": 1524762583
}

Or pass the token of the
caller to a lookup service

func getApplication(conf *conf, token *string) (string, error) {
 var application string
 query := "SELECT application from tokens where api_token=?"
 stmt, err := conf.Connection.Prepare(query)
 err = stmt.QueryRow(token).Scan(&application)
 if err != nil {
 return nil, err
 }

 return application, nil
}

Once you have identified the
classification you can produce

the appropriate response

Make sure you log
everything about how you
produced the information

What does this provide

• An audit trail of calls with the classification of the
caller

• An audit trail of the classification of data that was
returned by the callee to the caller

• A guarantee that data of specific classifications
only reached designated locations

Why is this important?

If you don’t understand the
flow of data, how can you

protect against attack?

If you don’t understand the flow
of data, how can you determine

the depth of a breach?

If you log accurately, you
can produce precise data

flow models

{
 "timestamp": “2018-04-26T16:24:44+00:00”,
 "caller": "frontend-service",
 "callee": "user-service",
 "caller-classification": "public",
 "response-classification": "public",
 "source": "jwt"
}

Which lets you build
accurate threat models

But also provides
evidence for auditors

As you can see, we’ve
got some work to do

A lot of these ideas
have yet to materialize

But if we want to start taking
security seriously, this type
of discipline is important

If we do this right more
than security falls out

Doing this right benefits
architecture, operations,
and business intelligence

Parting thoughts

Questions?

