rez2; .M
197 168.1.258
192,108,1,255
197 168.1.1
22¢4.9,0,251
£F@2: +¥n
1%2,168,1.1
19Z.168.1.255
192.168,1,255
fre2: :1:5
rez,.1.3
159,254, 255.255
£FO2::1:3
224 .9.0.252
216,218,224 241
frez2::1:3
224,990,252
192.168.1.1
b U P N 192.168.1.1
19£,108.1,1¢5 19£.168.1.1
192.168.1.165 197.168.1.1
19£.108.1,1¢5 é 3
192.168.1.165
19£.1068.1.1¢5
192.168.1.165
19£.168.1.1¢5
192.168.1.145
192.168.1.1¢5 216,218,224 201
192.168.1.165 : 216.218.224 241
19%2.108.1.1¢3 216,218,224 241
€250 2073 MG TR 4114 37 €FG2: 13
192.168.1.1¢% 224.9.0.1%
197 168 1 165 q 197 16R 11
feb®d: (2ci3: 1960 :78d: €116 fféz::1:3
197 16R 1,145 2% N QIS
192.1068.1.16¢5 212.4.1)6.
197 16R 1145 217 8132
192.1068.1.1¢5 212.4.1)6.
192.168.1.165 19Z.168.1.
192.1068.1.1¢5 1%2.108.1.
£280: :2c23:196¢:78d: 116 ffe2::1:3
192.166.1.1¢5 224.9.0. 2%
19Z.168.1.1€5 74.125.19.1:9
F280: 12c23: 1961 78d: €116 FFRE2: 11232
19Z.168.1.1€5 224 .9.0.452
192.168.1.165 192.168.1.1
19Z.168.1.16¢5 74.125.19.1:8
192.168.1.165 192.168.1.1
19Z.168.1.16¢5 194.168.1.1

N..:...
W
-

G

CESYEREEERENER 8RR

nggsggee§eoeeeeeg=egeco
e L e I R I e e e R RS LN S I R R B R

©.115373
©.0¢77206

SEETETEEEIECEEINEEEE U PEREIRERLE

ST 333C505050 00505055 5555855
88E8°°§°°aawew=°g°=

SRR CROROROROROROROLELIRICRCRCORORORORORODORORIRS

R R A T S 2 3 R R TR A R YR S
'ggga..ﬁ..§§.....t..555......&&"0'..&..... L

SRR B e B A

Put your thoughts on the wire with bro.org
Seth Hall
gﬁoug"q"!uus
Co-founder and Chief Evangelist

http://bro.org

A bit about me

BS in Geography from OSU
Incident Responder at OSU

Detection/Response architect - |
at GE

Core Bro developer at ICSI

Co-founder and Chief
Evangelist at Corelight

A bit about me

Always loved playing with
programming languages.

Discovered love for network A
traffic analysis. # |)

Intersection between these
would be amazing!

| did what any sensible

person in my situation would
do...

Doubled down and became an expert!

(in a niche language with very few users)

~ event bro_init()
£ { <
print "Hello World!";

}

What is Bro?

« 23 year old network traffic analysis software written in
C++

 Heavily used in academic research and by operational
security teams.

 Domain specific programming language for event
analysis through time.

 With a built in source of events from network traffic!

How does it work?

Script Interpreter
(writing Bro scripts and handling events)

Core
(parsing and event engine)

Packets
(frequently from a tap)

Domain Specific Features

Event driven architecture (more on this in a second)
Network oriented data types (IP addresses, subnets, ports)
Built in state expiration

e global my_data: set[string] &write_expire=1hr;

Built in network protocol parsing, supported protocols

e IP/TCP/UDP/HTTP/SMTP/SMB/SSL/FTP/DCE-RPC/DHCP/
Modbus/Radius/RDP/RFB/SIP/NTLM/Syslog/DNS/SSH

Another Domain Specific
Feature - Error handling

 Runtime errors don’t take down Bro (like accessing an
unset field in a record).

 Generate a “Reporter” event and unwind the current
stack.

 This can sometimes cause memory leaks but people
tend to have Bro doing lots of tasks and they’d
rather have the memory leak than have Bro
shutdown.

Event driven architecture

connection_established(c: connection)

{
}

fmt("%s established a connection to %s:%d", cidorig_h, cidresp_h, cidresp_p);

connection_state_remove(c: connection)
{

fmt("%s ended a connection to %s:%d", cidorig_h, cidresp_h, cidresp_p);

192.168.1.80 established a connection to 98.137.80.32:80
192.168.1.80 established a connection to 98.138.6.52:80
192.168.1.80 established a connection to 205.177.95.54:80
192.168.1.80 established a connection to 64.4.52.169:80
192.168.1.80 ended a connection to 192.168.1.1:53
192.168.1.80 established a connection to 66.196.80.71:80
192.168.1.80 established a connection to 216.34.207.62:443

Slight change to that last one

connection_established(c: connection)

{
(c$idsSresp_p 80/tcp)
fmt("%s established a connection to %s:%d", cidorig_h, cidresp_h, cidresp_p);

http_request(c: connection, method: string, original_URI: string,
unescaped URI: string, version: string) 5

fmt("%s requested %s from %s", cidorig_h, original_URI, cidresp_h);

¢ 192.168.1.80 established a connection to 74.125.161.101:80
¢ 192.168.1.80 requested /edgedl/toolbar/components/
GoogleToolbar_64_D7A51B83F435BE9A.dIl.I1z from 74.125.161.101

¢ 192.168.1.80 requested /search?sourceid=navclient&ie=UTF-8&qg=msn+toolbar from
74.125.225.18

¢ 192.168.1.80 established a connection to 74.125.95.101:80
¢ 192.168.1.80 requested /toolbar/ie8/accelerators/intl/en/manifest.txt from 74.125.95.101

If we can do that, could we
put together a log?!

connection_established

http_request
http_header
http_header

http_end_entity

http_response
http_header
http_header

http_end_entity

connection_state remove

TS 1305146576.846794
192.168.1.80:49188 ->
2 (O NS 98.137.80.49:80
METHOD GET
HOST Xp.yimg.com
/ei/toolbar/ie/
URI ytb_8.3.9.18_2.3.5_ysp_2.
0.2.12_mail_bts_pub_us_
Mozilla/4.0 (compatible;
USER_AGENT MSIE 7.0; Windows NT
6.0;......
STATUS CODE 200
STATUS_MSG OK

http://xp.yimg.com

Apply the same approach to
other protocols

Bro Logs: a selection

These cheat sheets document a subset of the most important
logs from Bro release version 2.5. To learn about enterprise
solutions from the creators of Bro, visit corelight.com.

conn. |Og | IP, TCP, UDP, ICMP connection details

FIELD TYPE DESCRIPTION

ts time Timestamp of the first packet

uid string Unique ID of the connection

id.orig_h addr Originating endpoint’s IP address (Orig)

Originating endpoint's TCP/UDP port
(or ICMP code)

id.resp_h addr Responding endpoint’s IP address (Resp)

id.orig_p port

id.resp_p port (R;slpcﬁgicnogdeer)\dpoint‘s TCP/UDP port
proto proto Transport layer protocol of connection
service string Detected application protocol, if any
duration interval Connection length

Orig payload bytes; from seq
numbers if TCP

Resp payload bytes; from sequence
numbers if TCP

orig_bytes count

resp_bytes count

conn_state string. Connection state (see conn.log > conn_state)
local_orig bool Is Orig in Site::local_nets?
local_resp bool Is Resp in Site::local_nets?
missed_bytes count Number of bytes missing due to content gaps

histol strin, Connection state history
& B (see conn.log > history)

orig_pkts count Number of Orig packets

Number of Orig IP bytes

orig ip_bytes Couny (via IP total_length header field)
resp_pkts count Number of Resp packets

Number of Resp IP bytes

(via IP total_length header field)
If tunneled, connection UID

of encapsulating parent(s)

resp_ip_bytes count

tunnel_parents set

orig_I2_addr string. Link-layer address of the originator
resp_I2_addr string. Link-layer address of the responder
vlan int The outer VLAN for this connection

inner_vlan i The inner VLAN for this connection

dth |Og | DHCP lease activity

FIELD TYPE DESCRIPTION

ts time Timestamp of the DHCP lease request

uid & id Underlying connection info > See conn.log
string Client's hardware address
addr Client's actual assigned IP address
interval IP address lease time

trans_id count Identifier assigned by client; responses match

corelight

conn_state

A summarized state for each connection

Connection attempt seen, no reply

Connection established, not terminated (0 byte counts)
Normal establish & termination (>0 byte counts)
Connection attempt rejected

Established, Orig attempts close, no reply from Resp
Established, Resp attempts close, no reply from Orig
Established, Orig aborted (RST)

Established, Resp aborted (RST)

Orig sent SYN then RST; no Resp SYN-ACK

Resp sent SYN-ACK then RST; no Orig SYN

Orig sent SYN then FIN; no Resp SYN-ACK (“half-open”)
Resp sent SYN-ACK then FIN; no Orig SYN

No SYN, not closed. Midstream traffic. Partial connection.

history

Orig UPPERCASE, Resp lowercase, unig-ed
A SYN without the ACK bit set
A SYN-ACK ("handshake”)

S
H
A Apure ACK
D

Packet with payload (“data”)

Packet with FIN bit set

Packet with RST bit set

Packet with a bad checksum
Inconsistent packet (Both SYN & RST)
Multi-flag packet (SYN & FIN or SYN +RST)
Retransmitted packet

Flipped connection

Corelight
Sensor

Designed by the creators of open source Bro, the Corelight Sensor
is a turn-key appliance optimized for performance and integration.

dﬂSlOD PNS cueryrepanse dets

-l
e rhy g e s cr ~he Lan (e ag
l f NSy s TP o LD

N M erdier nacned iy ON Do
R S TI WL

\ord b vaby beoury #d oo
dorman wre Lt I e gy
-

b pary e

Vihar 1paciing the Quary o

Sencrptow same of the Suary wow
BAA MM TR

ie M code ek n B e DAL repe

N ptew raTe ClIepc e B
DA NDORAR NOD TA

Asrw il e

L -
Vuriahon 1o e menagt wa | nreried

A s B

P e

e e DL

wd Bl sl b

v gorm

At A FROUTE SN TESIM N e

A1t arcomn

Quary wan remcind By Merew

fi les.log File inalyss sesuits

WTNELETG WY S WS ST M
Hejow DB T b g N
ot e das
Soath) Bat eceved e G40
- wn i B TTE A
M el s wrod Be s e 0 s daa

el of Bl reldnd 1o st

2L MTTP gt deph
Yt o avudy ars Mlaed Sregth aran
Ne Yoe o dmamred BvBen s e

Mo rawe Morwms i @i b rom s ondyrer

o . Pt hrdins P e Fe v

ey P L Y

. ong W T Dy T

e Wi o Nuroer 4 0 ovded { Ve ndn Tgre

wber of byt Aot thaodd
s We

mareg by e _ Ste of o o eyt mened

CORE JGHT. W NAOPLOM L)

overfew byws

(ST
10 TACHT e T @ aed

L. Mormanon dervity of B file (vt

ftp.1CQ 1 ers raquectieg

Tt ITION

e T
Undetvag Commacton 1l See Cone 0g
Ravvisve Lo 1he # 19 wonan
Pusimnrd Rt th FET suses
Ay e epem ey
e 1 1 Pare’s & Ve banles
Sow o trindered Se

Pyip -
X Pwcon

bptypraiae Pom enet N rapenie
P

ey 18

httD. QQ | HTT? reques/ mply detals

TR SEITITION

e Ty MTTF et
Undedyng commacton inlo See conm ag
Ppeinet dept> 70 1 0 comrex o
HIP Regunt vk (1T POLT HLD, 44
vl P A Ve
UN wedn e nowt
e ol s @
Wb o Pt s gt b b s

e

Uncompeemid Ontedt srecf Mg dete
e be wharwi byt Paierws
Ut eiuge vl by Py
Lot mer Ta ol redly Yyevw

Lot wer S ol recly mena b vesver

Fre wegee 15y fum be g
e ramn ¥

P

https://github.com/corelight/bro-cheatsheets

https://github.com/corelight/bro-cheatsheets%5C

Why any of this?

 Know what’s happening on your network.
 Everyones environment gets the same logs!

e Detect Intrusions

SSH Bruteforcing

e Guess if a connection is successful

 our SSH analyzer will do this for you and generates
an event with the heuristic

 Watch for too many failed connections in a short
period.

SSH Geofencing

 Watch for probable successful SSH connections
Do a geoip lookup for the non-local address

e |f it’s In a particular set of countries, let me know!

SSL fingerprinting

e Salesforce has a script that generates fingerprints
based on the various settings sent while negotiating
an SSL connection.

 There are some fingerprints they include to detect
various pieces of software.

Conn Burst

 Detect connections that are moving a lot of data
quickly.

* |t may indicate connections that can be ignored.

* Yet another tiny signal.

Intel (intelligence) framework

 This is a built in part of Bro.
* Load IOCs (indicators of compromise) into Bro

« Scripts will feed data into the intel framework and
check it.

* You get a log that says what was found, when it was
found, where it was found, and any meta data about
the intelligence item (feed it was from, url for more
iInformation, etc)

Credit Card Exposure

Watch for credit card candidates in HT TP and SMTP
bodies.

Take the candidates and validate them with the Luhn
checksum

Do a local lookup in a table of lINs (issuer identification
numbers)

Log all of the information including an excerpt around
the CC and redact the number by default.

SSN Exposure

* Grab candidate SSNs out of HTTP and SMTP

 Look for either a defined set of state prefixes or a
particular value in a set.

 Log it with some context.

Bro Package Manager

 Everyone has a common platform.

* Analysis and logging scripts can be shared between
institutions.

* All of the previous scripts are either built into Bro or
available through the Bro Package Manager.

‘ corelight 7

Thanks!

We’re hiring at Corelight

