
Serverless tales from the trenches

Peter Sbarski

Author
Serverless Architectures on AWS

https://book.acloud.guru

VP Engineering | VP Content
A Cloud Guru

https://acloud.guru

Peter Sbarski, PhD
AWS Community Hero

@sbarski

Organizer
Serverlessconf

https://serverlessconf.io

3

Serverlessconf San Francisco
July 29 – August 1, 2018

https://sf.serverlessconf.io

IaaS PaaS Serverless

Unit of Scale Virtual Machine or
Container (Docker)

Application Function

Fleet Operational

Responsibility

Application developer Shared between
developer and vendor

Vendor only

Required Management

& Maintenance

High – Operating System
level

Medium – Application
level

Low – function level

Billing Per VM per minute or
hour

Per VM per minute or
hour

Per 100 milliseconds
(continuous)

Impact of Idle Time Economic loss when
machines are idle or
underused

Economic loss when
machines are idle or
underused

None – functions
execute only when
needed

Integration with other

vendor services

Manual Mixed Automatic

Source: Serverless Design Patterns (T. Wagner, Y. Kiriaty, P. Sbarski)

Why Serverless?

Service Cost

Key Management Service $2.13
Kinesis $20.16
Simple Storage Service $58.36
API Gateway $100.00

Elastic Transcoder $169.89
Developer Support $178.74
Lambda $206.66

DynamoDB $424.27
Redshift $503.50
CloudWatch $586.24
CloudFront $3,775.42
Total $6,025.37

February 2018 – AWS Bill

9

Agility

GraphQL EndpointAPI Gateway

Microservice #B

DynamoDB

CloudFront S3

Microservice #A

DynamoDB

Other Services

Jester

Cypress

Serverless Stories

Frontend and API Failover

Making functions & services more resilient

Patterns and architectures

Frontend Failover

Frontend Failover

Frontend Failover

Route 53User

CloudFront S3 Bucket

Health Check
Primary Website

Backup Website

Check health
every few seconds

Frontend Failover

Frontend Failover

Frontend Failover

API Failover

API Failover

Route 53User

Health Check
API Gateway

API Gateway

US East 1

US West 1

Lambda

Lambda

DynamoDB
Global Tables

API Failover

API Gateway – US East 1 API Gateway – US West 1

API Failover

API Failover

API Failover

Making functions & services more resilient

Handling Errors

Peter uploads a file

LambdaFirebase (Database)

Source S3 Bucket Lambda Elastic Transcoder

Destination S3SNS

LambdaDestination S3 Lambda

Handling Errors

Peter uploads a file

LambdaFirebase (Database)

Source S3 Bucket Lambda Elastic Transcoder

Destination S3SNS

Dead Letter Queue
(SNS)

Error!

Error, Will
Robinson

Lambda

Burning down the house

Burning down the house

You might still over provision or under provision DB connections

Multiple functions may need DB access with different usage profiles at different times.

Burning down the house

https://github.com/aws-samples/aws-lambda-manage-rds-connections

Tips
• 1 function = 1 task (avoid fat monoliths)

• No state (be idempotent)

• Design for failure

• More memory = more CPU and IO

• Set function concurrency to 0 as a kill switch

• Keep permissions and roles tight

• Incremental architecture is not dirty

Patterns and Architectures

Primitive
- Periodical (Cron Jobs)

API
- Proxy
- Facade

Orchestration
- One way chain
- Two way chain
- Fan in
- Fan out

Workflows
- Long Running tasks
- Pipes and Filters
- Inline Stream Transform

Traditional
- Command
- Singleton

Compound
- Backends
- CQRS
- Data processing

Patterns

Source: Serverless Design Patterns (T. Wagner, Y. Kiriaty, P. Sbarski)

Patterns
Name
API Proxy (also known as wrapper)

Description
Acts as a mediator between two systems that cannot communicate directly.
Transforms request and response payloads to facilitate exchange of information.

Motivation
Useful when incompatible systems need to talk. Reduces coupling by removing
the need to build direct dependencies between incompatible systems.

API Proxy

System A (JSON) Transformation FunctionAPI Gateway System B (XML)

Transformer function
transforms JSON to
XML and back again.

Patterns
Name
Simple fan-out

Description
Allows multiple endpoints to receive a copy of an input event. Turns any single-
receiver delivery system into a multiple-receiver system.

Motivation
Event-based systems are often designed to have a single receiver for events, and
API calls are by definition single receiver. The simple fan-out pattern
asynchronously delivers its triggering event to one or more workers.

Simple fan-out

How would you design
transactional fan-out?

Patterns
Name
Inline stream transform

Description
Transmits data between systems. Can be chained, can multiple and demultiplex
at the source or destination. A transformation function can transform a record
with the result progressing through the stream.

Motivation
A way to decouple systems that share data. Can offer temporal decoupling by
allowing producers and consumers to operate at different rates. A transform
function is used to clean, modify, group, analyze data before it gets to the
consumer.

Streams

Producer A

Consumer

Same Stream

STREAM

Transformation Function

STREAM

Consumer A stream can be sharded
if order is not important

40

How can you get started?
• serverlessconf.io & video.serverlessconf.io

• Follow @serverlessconf for serverlessconf info

• A Cloud Guru acloud.guru/serverless

• Book: “Serverless Architectures on AWS”
https://book.acloud.guru

• Follow @acloudguru and @sbarski

Thanks :-)

https://acloud.guru
https://serverlessconf.io
@sbarski

