
1 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

2 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Naomi Ceder, @naomiceder

Chair, Python Software Foundation
Quick Python Book, 3rd ed
Dick Blick Art Materials

3 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Introduction
I'm a language nerd - human languages, that is (and computer languages, too)
Every language has its way of doing things

It's not just vocabulary (Google Translate Sings)
the way of thinking about things/expressing things is different (examples)

4 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Computer languages aren't as complex as human languages, but the
same thing is true -
the structures of the language controls how you think about something.

5 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

What happens when things go wrong?
Bad values
Bad logic
Unavailable resources
Etc

6 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

You can also think of them as
compile time - syntax errors, type errors (with static typing)
run time - resource errors, errors from external processes, type errors (with dynamic
typing)

or

unrecoverable errors - syntax errors, type errors (with static typing)
recoverable errors - resource errors, errors from external processes, type errors (with
dynamic typing)

7 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

How does a language approach handling errors?
However you look at them, the approach a language takes to handling errors is an important part of
how the language works;

it influences the structure and flow of the code.

8 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

perl - do or die
open(DATA, $file) || die "Error: Couldn't open the file $!";

die "Error: Can't change directory!: $!" unless(chdir("/etc"));

9 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

C
return value
 char *ptr = malloc(2000000000UL);
 if (ptr == NULL) {
 perror("malloc failed");

errno
 fp = fopen("my_file.txt", "r");
 printf(" Value of errno: %d\n ", errno);

setjmp / longjmp
segfault

10 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

C++
Exceptions, but a lot of LBYL checking

In []: // Some code

cout << "Before try \n";
try {

cout << "Inside try \n";
if (x < 0)

{

throw x; // just simulating an error...

cout << "After throw (Never executed) \n";
}

}

catch (int x) {

cout << "Exception Caught \n";
}

cout << "After catch (Will be executed) \n";
return 0;

11 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Java
Exceptions, but a lot of LBYL checking
"checked" (or "catch or specify") and "unchecked" exceptions

In []: public static void main(String[] args) {

try {

FileReader file = new FileReader("a.txt");

BufferedReader fileInput = new BufferedReader(file);

// Print 3 lines

for (int counter = 0; counter < 3; counter++)

System.out.println(fileInput.readLine());

fileInput.close();

}

catch (IOException e) {

System.err.println("Caught IOException: " + e.getMessage());

}

}

12 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Javascript
Exceptions (6 native types)
But you can throw anything

In []: ### Errors in Javascript

throw new Error();

throw true;

try{
document.getElementById("mydiv").innerHTML='Success' //assuming "mydiv" is undefined

}

catch(e){

if (e.name.toString() == "TypeError"){ //evals to true in this case

//do something

}

}

13 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Go
return result, error separately

In []: var err error

var a string

a, err = GetA()

if err == nil {

var b string

b, err = GetB(a)

if err == nil {

var c string

c, err = GetC(b)

if err == nil {

return c, nil

}

}

}

return nil, err

14 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

They all have their advantages... and disadvantages...
And reflect the nature of the language.

15 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

What about Python?

16 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Python's approach is to handle, rather than to avoid, errors
EAFP - Easier to Ask Forgiveness than Permission
contrast with, say, Java - LBYL "Look Before You Leap"

17 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

This approach makes sense for Python because...
Simpler, easier to read code
Duck typing
Late binding of variables (types)

18 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

description of Python exceptions
try:

Followed by block of code

except <Exception class> as e:

Exception handling block

else:

Block that executes if no exception is raised

finally:

Block that is always executed, e.g., to close a file

You can also deliberately raise and exception: raise <subclass of BaseException>

19 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In [2]: try:
print("running code")

#raise Exception

except Exception as e:

print("in exception block")

else:
print("this executes if no exception")

finally:
print("this always executes")

running code

this executes if no exception

this always executes

20 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Exceptions and inheritance
exceptions became classes in Python 1.5 (1997)
only objects which are subclasses of BaseException can be raised (since Python 3)
most exceptions are subclasses of Exception
bare except: traps Exception
SystemExit, ExitGenerator, and KeyBoardInterrupt inherit from
BaseException, since they might not want to be trapped by a bare except:
subclassing allows more precise catching of exceptions

21 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In [3]: raise Exception("Error occurred")

Exception Traceback (most recent call last)

<ipython-input-3-f31826022bcc> in <module>

----> 1 raise Exception("Error occurred")

Exception: Error occurred

22 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In []: ### Exception Class Hierarchy

"""

BaseException

 +-- SystemExit

 +-- KeyboardInterrupt

 +-- GeneratorExit

 +-- Exception

 +-- StopIteration

 +-- StopAsyncIteration

 +-- ArithmeticError

 | +-- FloatingPointError

 | +-- OverflowError

 | +-- ZeroDivisionError

 +-- AssertionError

 +-- AttributeError

 +-- BufferError

 +-- EOFError

 +-- ImportError

 | +-- ModuleNotFoundError

 +-- LookupError

 | +-- IndexError

 | +-- KeyError

 +-- MemoryError

 +-- NameError

 | +-- UnboundLocalError

 +-- OSError

 | +-- BlockingIOError

 | +-- ChildProcessError

 | +-- ConnectionError

 | | +-- BrokenPipeError

 | | +-- ConnectionAbortedError

23 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Sub-classing exceptions
easy to have exceptions that specific to a module/library/package
long, expensive, error prone, etc processes
errors inside a chain of function calls and/or classes can be caught with more precision

25 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In [7]: ## Custom (sub-classed) exceptions

class MySpecialException(Exception):
pass

class MyEvenMoreSpecialException(MySpecialException):
pass

try:
#raise Exception("Exception")

#raise MySpecialException("MySpecialException")

raise MyEvenMoreSpecialException("MyEvenMoreSpecialException")

except MyEvenMoreSpecialException as e:

print(e)

MySpecialException Traceback (most recent call last)

<ipython-input-7-6cd3c8bf67ea> in <module>

 12 try:

 13 #raise Exception("Exception")

---> 14 raise MySpecialException("MySpecialException")

 15 #raise MyEvenMoreSpecialException("MyEvenMoreSpecialException")

 16 except MyEvenMoreSpecialException as e:

MySpecialException: MySpecialException

26 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Remember
often one of the built in exceptions will do just as well a specific subclass
go for the best trade off of readability/functionality
if an exception will be thrown out of the module/library, the code handling it will need to
import the exception

In []: # library specific exceptions

from my_library import SpecialClass, sub_library.ErrorOne, sub_library.ErrorTwo, sub_library

.ErrorThree

27 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Observations
Python has a very rich and well-developed system of exceptions
Errors can be specific and handled according to inheritance hierarchy
As an interpreted language, Python is suited to handle and recover from exceptions

28 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Exceptions are more Pythonic than checking

Recommendations
in general, catching an exception is preferred to checking a result if:

the exception is expected to be relatively infrequent
the exception thrown will be identifiable and specific
the code will be made easier to read...

29 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In []: # Avoiding exceptions

for parameter in list_of_parameters:

result = database.query_operation(parameter)

if result is not None:
print(result.count())

else:
continue

30 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In []: # with exceptions

for parameter in list_of_parameters:

try:
print(database.query_operation(parameter).count())

except AttributeError:
continue

31 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Exception pitfalls
bare excepts
too many excepts
code block too large
poorly handled

32 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Bare excepts
Will not catch SystemExit, KeyboardInterrupt, or GeneratorExit (subclasses of
BaseException)
Will catch ALL subclasses of Exception , handle the same way
Not Pythonic, rare to want to handle all possible exceptions with same code

33 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In []: try:
x = int(input("Enter an integer: "))

print(10/x)

except:
print("An error occurred...")

34 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Too many excepts
make code harder to read

35 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In []: try:
filename = input("Input filename: ")

except KeyBoardInterrupt as e:

print("user interrupt")

sys.exit()

try:
for line in open(filename):

try:
value = float(line.strip())

except ValueError as e:

value = 0

print(value)

except FileNotFoundError as e:

handle file not found

print("File not found")

36 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Code block too large
difficult to handle specific errors
location of error not specific

37 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In []: """ Reads a file and returns the number of lines, words,

 and characters - similar to the UNIX wc utility

"""

import sys

def main():

initialze counts

try:
line_count = 0

word_count = 0

char_count = 0

option = None
params = sys.argv[1:]

if len(params) > 1:

if more than one param, pop the first one as the option

option = params.pop(0).lower().strip()

filename = params[0] # open the file

with open(filename) as infile:

for line in infile:

line_count += 1

char_count += len(line)

words = line.split()

word_count += len(words)

if option == "-c":

print("File has {} characters".format(char_count))
elif option == "-w":

print("File has {} words".format(word_count))
elif option == "-l":

38 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Poorly handled
pass should be rare (maybe okay in debugging)

40 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In []: try:
filename = input("Input filename: ")

for line in open(filename):

value = float(line.strip())

print(value)

except:
pass

41 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Guidelines for using exceptions
Consider how often will the exception occur
Be thoughtful about what exceptions you're handling and how
Use built-in exceptions where it makes sense

42 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Exceptions aren't just for errors any more...

43 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Thanks to the Harry Potter Theory...
I'm sure that when J.K. Rowling wrote the first Harry Potter book (planning it as the first of a series
of seven) she had developed a fairly good idea of what kind of things might eventually happen in the
series, but she didn't have the complete plot lines for the remaining books worked out, nor did she
have every detail decided of how magic works in her world.

I'm also assuming that as she wrote successive volumes, she occasionally went back to earlier
books, picked out a detail that at the time was given just to add color (or should I say colour :-) to
the story, and gave it new significance...

In a similar vein, I had never thought of iterators or generators when I came up with Python's for-
loop, or using % as a string formatting operator, and as a matter of fact, using 'def' for defining both
methods and functions was not part of the initial plan either (although I like it!).

~ Guido van Rossum, The Harry Potter Theory of Programming Language Design -
https://www.artima.com/weblogs/viewpost.jsp?thread=123234 (https://www.artima.com/weblogs
/viewpost.jsp?thread=123234)

44 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Exceptions are raised by all of the following code snippets
How many of these are you aware of?

What exception(s) are raised?

45 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In []: import sys

sys.exit(0)

In []: raise SystemExit(0)

46 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

SystemExit
sys.exit() raises SystemExit exception
raise SystemExit has the same effect

47 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In []: a_list = [1, 2, 3, 4]

for i in a_list:

print(i)

48 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

StopIteration
Iterators raise a StopIteration exception to indicate that they are exhausted
Some iterables with sequence semantics can raise an IndexError to tell the iterator that the
end of sequence has been reached

49 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In [8]: for line in open("text_file.txt"):

print(line)

line 1

line 2

line 3

50 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

EOFError
Reading a file when there's nothing left to read raises an EOFError exception

51 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In [9]: def num_gen():

numbers = [1, 2, 3, 4]

for number in numbers:

yield number

print("Last number was sent")

for number in num_gen():

print("Got", number)

if number == 2:

break

print("All done")

Got 1

Got 2

All done

52 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In [11]: def num_gen():

numbers = [1, 2, 3, 4]

try:
for number in numbers:

yield number

print("Have sent", number)

except GeneratorExit:
print("GeneratorExit exception")

raise GeneratorExit

print("Last number was sent")

#for number in num_gen():

print("Got", number)

if number == 2:

break

#print("Loop done")

gen1 = num_gen()

for number in gen1:

print("Got", number)

if number == 2:

break
print("Loop done")

del gen1

Got 1

Have sent 1

Got 2

Loop done

53 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

GeneratorExit
generators raise StopIteration when exhausted, like other iterators
not "finishing" a generator object leaves it blocking after the yield latest yield...
when the generator object is "finished", generator.close() raises a GeneratorExit exception
at the last yield

55 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In [13]: class Foo:
def __getattribute__(self, attr):

try:
print(f"About to get attribute {attr}")
attr = super().__getattribute__(attr)

except AttributeError as e:

print(f"This class has no attribute {attr} - raising AttributeException")
raise e

return attr

def __getattr__(self, attr):

print(f"AttributeError raised when trying to get attribute {attr}")
return f"You tried to get {attr}"

foo = Foo()

print(foo.__str__)

print(foo.bar)

About to get attribute __str__

<method-wrapper '__str__' of Foo object at 0x1071ae940>

About to get attribute bar

This class has no attribute bar - raising AttributeException

AttributeError raised when trying to get attribute bar

You tried to get bar

56 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

AttributeError
if __getattribute__ doesn't find an attribute name and raises an AttributeError...
__getattr__ is called and it should either compute/return the value or raise an
AttributeError

57 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

What does all this mean?

58 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In Python exceptions are used as form of flow control
when the exception condition is expected to be very infrequent compared to the other
conditions
when the exception condition is rather different than the normal condition
when using an exception instead of checking for the error condition makes code simpler

59 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

But using so many exceptions just feels... wrong...
won't using a lot of exceptions hurt performance?
doesn't using exceptions make the code more complex? harder to reason about? harder
to test?

60 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

But... what about performance?

Aren't exceptions expensive?

61 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Exceptions ARE a bit slower, but...
they are optimized and are not as expensive as they were in, say, early C++
they occur so rarely that there is little cost
overall more Pythonic code tends to be faster

62 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In [14]: class Count():
def __init__(self, count):

self.count = count

def __getitem__(self, key):

if 0 < key < self.count:

return key

else:
IndexError raised to iterator

raise IndexError

def test_count():

counter = Count(1000)

iterator raises StopIteration to end interation

for i in counter:

x = i * i

63 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In [17]: def test_while_loop():

i = 0

length = 1000

while i < length:

x = i * i

i += 1

64 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

In [15]: %timeit test_count()

In [18]: %timeit test_while_loop()

1.49 µs ± 102 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

218 µs ± 9.34 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

65 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Isn't using exceptions for flow control confusing/unreadable/somehow
bad?

Exceptions are such an integral part of Python, that by the time you notice, they should be
understandable, Pythonic, even
Used correctly they make the code more readable

66 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

Yes, (in Python) it really is easier to ask forgiveness than
permission

67 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

68 of 68 Easier to ask forgiveness slides 4/25/19, 9:11 PM

