
Principles for
Developing

More Secure
Systems

GoTo Chicago 2019Eleanor Saitta @Dymaxion

Wait, you want me to start with what?
Security is neither checklists nor infinite unrelated problems

Problems happen when you don’t:
• Understand your users’ goals and context
• Understand the traps your tech stack is setting
• Combine your stack’s primitives to meet security objectives
• Use processes that catch errors in the previous items
• Make decisions at the edge where there’s enough context

Principles give us ways reason about the structure of our work, even
when we don’t yet understand the problem

Presenter
Presentation Notes
Learning to think with principles is slow; this is engineering transformation work to do it at the team levelYou can do it for yourself without that though

Security is the set of
activities that reduce the

likelihood of a set of
adversaries successfully
frustrating the goals of a

set of users.

Elevation Denial

Comment
C R X C R X

U D F U D F

Post
C R X C R X

U D F U D F

Account
C R X C R X

U D F U D F

High Med. Low

Threats:
A threat is a negative outcome in the human
process a system is built to support. They
come in positive (elevation of privilege) and
negative (denial of service) version.

Now that we know what can go wrong with
our system, we can create a list of security
objectives:

When [person] attempts to [make a bad
thing
happen], the system will respond by [doing
something sensible].

We draw the set of system responses from
another controlled vocabulary:

prevent the attacker from launching the
attack
detect and log the attack
detect and alert some actor about the
attack
rate limit the attack, as in DDoS reponse
thwart the attack from being successful

To build a secure system:
• Understand your users’ goals and context and the strategies they will

adopt in using your tool to frustrate their adversaries

• Understand the invariants your system must maintain and behaviors
you must enable to let their strategy succeed

• Understand lower-level behavior in your system that you must act to
preserve or to eliminate vulnerability from

• Deploy available primitives in a way that satisfies the above

• Test your system to find the places you’ve failed or where contexts,
strategies, or underlying systems have changed

• Iterate

Accuracy
Adaptability
Assurance
Availability
Capacity
Concealment
Compartmentalization
Confidentiality
Continuity
Control
Completeness
Cooperation
Correctness

Deployability
Deniability
Depth
Deterrence
Efficacy
Efficiency
Integration
Integrity
Interoperability
Goodwill
Mobility
Nonrepudiation
Observability

Precision
Predictability
Redundancy
Resilience
Responsiveness
Scalability
Simplicity
Simultaneity
Survivability
Synchronization
Trust
Unlinkability
Velocity

Invariants

Accuracy
Adaptability
Assurance
Availability
Capacity
Concealment
Compartmentalization
Confidentiality
Continuity
Control
Completeness
Cooperation
Correctness

Deployability
Deniability
Depth
Deterrence
Efficacy
Efficiency
Integration
Integrity
Interoperability
Goodwill
Mobility
Nonrepudiation
Observability

Precision
Predictability
Redundancy
Resilience
Responsiveness
Scalability
Simplicity
Simultaneity
Survivability
Synchronization
Trust
Unlinkability
Velocity

Invariants

Accuracy
Adaptability
Assurance
Availability
Capacity
Concealment
Compartmentalization
Confidentiality
Continuity
Control
Completeness
Cooperation
Correctness

Deployability
Deniability
Depth
Deterrence
Efficacy
Efficiency
Integration
Integrity
Interoperability
Goodwill
Mobility
Nonrepudiation
Observability

Precision
Predictability
Redundancy
Resilience
Responsiveness
Scalability
Simplicity
Simultaneity
Survivability
Synchronization
Trust
Unlinkability
Velocity

Invariants

Efficacy

Presenter
Presentation Notes
What we really care about is efficacy

Product Design
• If you build products and you have a design team, they

must be in the security loop

• Design determines the security outcomes your product
might help users reach

• Engineering determines if they actually reach them

• If your team is big enough, treat it as its own discipline
• If not, bring consulting security designers in

Design for Human Error

Design for Human Error
• Your staff click on things for a living
• Getting them to not click on one other thing is nigh-

impossible if they’re going to work at pace

• Do not try to yell^Wcajole^Wtrain them out of this

• Instead, making clicking on things safe

• If you can’t, consider goat farming
• The goats will still screw up, but it’s funnier

Correctness
• Poorly-tested software always has more bugs

that may have security impact
• Undocumented workflows and business rules

can’t be tested for correctness

• If you don’t have functional test suites, docs, and
good QA practices, get started on them at the
same time as you start on security

Mitigations Always Fail

Kill Bug Classes
• Security engineering

changes that don’t
involve killing bug classes
are emergency response
work

• …unless those changes
kill traversal instead

Confidentiality
You know this one, right?

Encrypt all the things!
Authenticate all the things!
Authorize all the things!

…eliminate side channels for all the things?!

Integrity
This one is familiar too, right?

Don’t let randos manipulate your data!
HMAC all the things!
Don’t use fucking Mongo for data that needs integrity!

Limits to
Invariants

Presenter
Presentation Notes
There are limits to what you can validate yourself when it comes to maintaining invariantsIf you can’t prove it’s right, change it or get someone else to verify it

Availability
So, how big is your AWS bill?

You can mostly solve this by giving various people lots of money
and massively complicating your architecture,
but have you actually tested it?

At least know where you single points of failure are
Make distributed denial of service someone else’s problem

Nonrepudiation
Strong authentication means U2F/WebAuthN
If your vendor doesn’t offer that, start yelling

No, there are literally no substitutes

Also, did you log enough data to reconstruct user actions?
Can you strongly link them to a user principle?
Yes, staff ssh access to prod hosts counts

Unlinkability
You don’t want anonymity — you don’t know what it means

X cannot be linked to Y
May be a statistical probability; making a risk call for users

Metadata tells most of the story

Don’t lie to yourself (or your users)

Trust
Know what you’re trusting and don’t lie to yourself

• What’s your service dependency graph?
• Which 3rd-party services are root equivalent for you?
• Third-party library auto-pulls in deployment are terrible

Actively manage trust chaining:
• Signed commits and code reviews verified during build
• Binary transparency and signature validation on execution
• TPM attestation to firmware hashes to receive local disk key
• Continuous attestation to system integrity to be a deployment target

You don’t control the user’s computer, and cannot assert what it will do

Observability
Can you tell if you’ve been owned?

Centralize all logs. Really, all of them. Make anything that doesn’t log log.
Then when you get the bill, figure out what you can live without

You care about events, not lines. Structure is your friend.
If you cannot correlate it, it does not exist
Time is a lie

If you do not look at it, it does not exist
Logging and alerting workflow is hard
Good indicator of compromise queries are hard, but do something
You cannot go back and log stuff last month when you got owned
Machine learning is mostly bullshit

Presenter
Presentation Notes
Security writes alerts, SRE/ops reads them

Scalability

Does a 10x scale
jump break your
security guarantees?

Limits
• Autoscaling is great for fast data

exfiltration

• Build infrastructure-level rate limits
when load is predictable

• Internal high-trust human interfaces
are a key place to put in limits

• Humans notice slow systems and
complain — free alerting!

• Key expansion functions can be
used to slow index lookups

Predictability

Programmatic Infrastructure
• Repetitive tasks lead to errors
• So does managing state simultaneously via different interfaces/formats

• Keep state in one place
• Ensure you can move cleanly between configurations
• Orchestrate deployment to individual management systems

• Done right, allows:
• More aggressive segmentation/response
• Automated cross-checks for rule enforcement
• Audit trails/two-person-rule infrastructure control (peer-opsing)
• Faster disaster recovery

Don’t Patch
• Patching deployed systems leads to drift

• Treat disk images as immutable and redeploy

• If redeploying is too slow, fix that

• Get good at rebooting the world — win/win

• Run all prod hosts with read-only system disks

Are you fighting security
problems that shouldn’t exist?

Try Langsec today!
 Do your parsers accept things they shouldn’t?

 Are your random numbers not random?

 Do your buffers overflow?

Dozens* of people like you have found a solution!

Presenter
Presentation Notes
When it comes to platform-level issues, come to the Church of Langsec, Pastor Manuel Laphroaig presidingUse generated parsers and emitters for everything that acts like a language or a protocol.Make protocols as simple as possible, and make sure they’re always formally specified.Never use anything Turing complete on the wire, including ASN.1 Use memory safe languages.Use crypto code written by adults and pay attention to how they say you should use it.

Compartmentalization
• Horizontally between systems/instances
• Vertically within a system
• Temporally across execution lifetimes

• Service-discovery-driven granular firewalling and per-
instance credentials

• Process namespaces, syscall ACLs, limited DB roles
• Fast-roll on VMs not doing slow batch work and

dropping privileges in-process

Separation of Concerns
• Engineers are human; the more they have to think

about at once, the more mistakes they make

• Split your system into layers

• Let each layer protect engineers against decisions

• At a minimum, physical, infrastructure, application

environment, application

Compartmentalize redux
• Beyondcorp is cool! Also you’re not Google
• Yes, build stuff like it’s Internet-facing
• But maybe don’t actually put it on the Internet

• Users have different risk levels, and their machines shouldn’t all be
hardened identically

• Many small company users expect local admin rights
• Easier to sell hardening only some boxes
• Compensate those folks with better IT service
• Give folks second machines for very high-exposure tasks

• For the love of god harden your office infrastructure

Simplicity
• Capability is a liability
• Delete data, delete code, shred servers, eliminate

complexity

• Combinatorial complexity will eat your children

• Never bring a Turing machine to a parser fight

• Adversaries love your excess capacity

• Every system you don’t have is one that can’t break
something you actually care about

Resilience
All of your systems are made of humans

All resilience comes from humans

You cannot automate fixes to problems you do not already see

Design your systems to enable the humans

Adaptive capacity means you need slack in your teams

Resilience
The application environment shall not contain footguns
e.g. SQLi vulnerable query methods, untyped variables,
unmanaged memory, etc.

If you have footguns, you have to document every single one of
them, or you’re just entrapping your engineers and lying to
yourself

Probably easier to just fix them

Orchestration
• Not automation — keep a human in the loop or

give your adversary shiny new tools

• Especially around security response:
• Image and burn hosts and their creds
• Roll any given credential
• Archive and deactivate users and purge

infrastructure of any processes they started
• Move entire systems to read-only mode
• Reboot the world without downtime

Documentation
Do you know what your code is supposed to do?

Will your incident response team be able to?

Documentation:
• Drives more rigorous development practices
• Makes teams flatter and more accessible
• Prevents bus errors and makes ramp-up faster

• Orienting documentation first
• Then business rules and security objective enforcement points
• Then maybe other stuff

#blameless

Blameless Engineering
• If you want to make things better you need to know what

happened

• If you fire people for fucking up they will never, ever tell you
what happened

• Assume everyone who works for you is smart and shows up at
work to do a good job

• Systematic underperformance can be handled separately

• Malice is an incident response issue

Thank you!

GoTo Chicago 2019 Principles for Developing More Secure Systems

ella@dymaxion.org

http

twitter

Like what you’ve heard?
Hire me to help your team:
https://structures.systems

	Principles for Developing More Secure Systems
	Wait, you want me to start with what?
	Security is the set of activities that reduce the likelihood of a set of adversaries successfully frustrating the goals of a set of users.
	Threats:�A threat is a negative outcome in the human process a system is built to support. They come in positive (elevation of privilege) and negative (denial of service) version.
	To build a secure system:
	Invariants
	Invariants
	Invariants
	Efficacy
	Product Design
	Design for Human Error
	Design for Human Error
	Correctness
	Mitigations Always Fail
	Kill Bug Classes
	Confidentiality
	Integrity
	Limits to Invariants
	Availability
	Nonrepudiation
	Unlinkability
	Trust
	Observability
	Scalability
	Limits
	Predictability
	Programmatic Infrastructure
	Don’t Patch
	Are you fighting security problems that shouldn’t exist?�Try Langsec today!
	Compartmentalization
	Separation of Concerns
	Compartmentalize redux
	Simplicity
	Resilience
	Resilience
	Orchestration
	Documentation
	#blameless
	Blameless Engineering
	Slide Number 40

