
Discovering RESTful Web
Microservices

Mike Amundsen
@mamund

training.amundsen.com

training.amundsen.com

http://g.mamund.com/msabook

http://g.mamund.com/cambook

"A reusable guide to the technology,
business, and politics of doing APIs

at scale within the enterprise."

-- Kin Lane, API Evangelist

Coming Soon!

"I wish I had this book 20 years ago."

"A great classroom text or web guide."

"Useful in a way that doesn't tie it to
specific technologies."

Discovering

A few years ago, in a slide deck far away...

RESTful Web Microservices?

By Dgies - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13691666

The words hypertext, hyperlink,
and hypermedia were coined
by Ted Nelson around 1965.

The Web

Ted Nelson

"We should work toward a
universal linked information

system, in which generality and
portability are [most] important."

-- Tim Berners-Lee, 1989

HTTP and HTML

"REST emphasizes scalability of
component interactions,
generality of interfaces,

independent deployment of
components, and intermediary

components."

-- Roy Fielding, 2000

REpresentational State Transfer (REST)

"An approach to developing a
single application as a suite of

small services, each running in
its own process and

communicating with lightweight
mechanisms."

-- Martin Fowler, 2014
https://www.thoughtworks.com/insights/blog/microservices-nutshell

Microservices

Microservice Characteristics

● Make each program do one thing well
● Expect the output of every program to be the input of

another program
● Design and build software to be tried early
● Use tools to lighten the programming task

Unix Operating Principles (1978)

● Make each program do one thing well
● Expect the output of every program to be the input of

another program
● Design and build software to be tried early
● Use tools to lighten the programming task

https://en.wikipedia.org/wiki/Unix_philosophy

Loosely-coupled components
running in an

engineered system.

Traveling

Traveling

Traveling
the Network

Programming
the Network

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Fallacies of Distributed Computing (1994)

L Peter Deutsch

"Data on the Inside vs. Data on the Outside, Helland (2005) http://cidrdb.org/cidr2005/papers/P12.pdf

"There is no simultaneity at a
distance."

-- Pat Helland (2005)

Programming the Network

Pat Helland

“Bugs will happen. They
cannot be eliminated, so they

must be survived instead.”

-- Michael T. Nygard

Nygard Stability Patterns

● Timeout
● Circuit Breaker
● Bulkhead
● Steady State
● Fail Fast
● Handshaking

"The journey of a thousand miles begins
with one step." -- Lao Tzu

Let's talk about code for a bit...

Let's talk about code for a bit...

Stateless Microservices

● Simple processors (converters, translators, etc.)
● No dependence on other microservices
● No local data storage (disk I/O)

The most common MSC example, but the least useful!

Stateless Microservices

● No shared state
● Easy to replace
● Easy to scale up

Stateless Microservices

But, what about the network?

Programming the network

● What if the work takes too long?

Stateless Microservices

1. Fail-Fast

Caves of Persisius

Persistence Microservices

● Simple (local) storage (reads and/or writes)
● Disk I/O dependent
● Possibly VM or one-U dependent

Commonly needed MSC, not the easiest to implement.

Persistence Microservices

● System of Record/Source of Truth
● Relatively easy to scale for reads (CQRS)
● No cross-service two-phase commits (Saga)

Persistence Microservices

But, what about the network?

Programming the network

● What if the work takes too long?
● What is the dependent service doesn't respond in time?
● What if the dependent service is down?
● What if the storage overflows (data, logs, etc.)?

Persistence Microservices

1. Fail-Fast
2. Timeout
3. Circuit Breaker
4. Steady State

Scholars of Aggregato

Aggregator Microservices

● Depends on other ("distant") microservices
● Network dependent
● Usually Disk I/O dependence, too

The most often-needed; most challenging, too.

Aggregator Microservices

● Sequence vs. Parallel calls
● Timing is everything
● Easy to scale (should be…)

Aggregator Microservices

But, what about the network?

Programming the network

● What if the work takes too long?
● What if a dependent services doesn't respond in time?
● What if a dependent service is down?
● What if storage overflows (data, logs, etc.)?
● What if a dependent service is unhealthy?
● What if traffic for a service spikes?

Aggregator Microservices

1. Fail-Fast
2. Timeout
3. Circuit Breaker
4. Steady State
5. Handshaking
6. Bulkhead

Nygard's Admonition...

Let not talk about code for a bit...

https://blogs.technet.microsoft.com/michael_platt/2005/08/30/integration-and-interoperability/

"Interoperation is peer to peer. Integration is
where a system is subsumed within
another."

-- Michael Platt, Microsoft

Aim for Interop, not Integration...

Aim for Interop, not Integration...

By Wkinterop - Powerpoint -> PNG, CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=35139609

Signal, Sign, and Symbol

Jens Rasmussen

Signal, Sign, and Symbol

● Signal: Protocol

● Sign: Format

● Symbol: Vocabulary

Signal, Sign, and Symbol

● Signal: Protocol
HTTP, CoAP, etc.

● Sign: Format
HTML, HAL, etc.

● Symbol: Vocabulary
ALPS, DCAP, etc.

Valley of the Metamorphs

Three Rules for Not Breaking Things...

1. You can't take things away
2. You can't change the meaning of things
3. All new things must be optional

You can't take things away...

You can't change the meaning of things...

All new things MUST be optional...

Roy Fielding, 2013

Roy Fielding, 2013

"How do you get
communication started among

totally uncorrelated 'sapient'
beings?"

-- J. C. R. Licklider, 1963

Service Discovery

Service Discovery

Service Discovery

Service Discovery

Service Discovery

Service Discovery

Licklider Memo (1963)

Licklider Memo (1963) Licklider Protocol (2008)

DNS for discovering machines

But we need to discover services...

Discovering Interoperative Services… (DISCO)

open-disco.org

Discovering Interoperative Services… (DISCO)

Discovering Inter-operative Services… (DISCO)

Service Discovery

Service Discovery

So...

We need better maps...

 So that we can program the network...

Which means applying patterns to our code..,

1. Fail-Fast
2. Timeout
3. Circuit Breaker
4. Steady State
5. Handshaking
6. Bulkhead

And that means understanding the role of semantics...

And the importance of change over time...

And the power of runtime service-level discovery...

That's a lot!

"The journey of a thousand miles begins
with one step." -- Lao Tzu

Discovering RESTful Web
Microservices

Mike Amundsen
@mamund

training.amundsen.com

http://g.mamund.com/2019-04-goto-chicago

