
Vue and You
Speaker Matt Danforth

About your speaker…
• Front End Focus throughout career
• Worked in startups, behemoths, waterfall shops and

agile shops
• Remembers life before NPM, GIT, console, and several

other now essential tools

• Works for Enova
• “Life is Short, Work Someplace Awesome!”
• Some of the smartest and most driven tech workers

I’ve worked with yet
• Great company culture and benefits

• https://www.enova.com/careers/
• @enova

https://www.enova.com/careers/
https://twitter.com/enova

In the beginning...

There was Mosaic!

Truthfully, Nexus, Midas, Lynx were
all precursors to Mosaic. Since
Mosaic allowed image presentation,
it was the game changer that started
making the web what it has become,
for better for or worse.

Turns out a Users really like pictures,
who knew?

And then there were Tables!

Tables everywhere! Tables were great for layout! But
they werdisplayen’t. Wait what?

Tables were created to tabular data. Layout is not
tabular data!

But it was early and we didn’t have any other great ways
to get layouts to “work”.

We started using floats and other markup from CSS to
accomplish our layouts. It wasn’t easy, but we did it.

These days we use grid or flexbox unless we’re
supporting legacy browsers.

Semantic HTML is the use of HTML markup to reinforce
the semantics, or meaning, of the information in
webpages and web applications rather than merely to
define its presentation or look. Semantic HTML is
processed by traditional web browsers as well as by
many other user agents. CSS is used to suggest its
presentation to human users.

Of course a war
broke out...

On the left, Internet Explorer!

On the right, the symbol chosen by
Mozilla to represent killing Mosaic,
which they pretty well did…

But having coded through the IE /
Netscape (mozilla) war, I don’t think
there were any real winners.

Well, they did stop making Netscape
after Netscape 4.0 broke things so
miserably but hey, they make Firefox
now…and Chrome, and Safari, and
Opera...

JavaScript?

Java was a big deal when Javascript was written so why
not call call the new language of the browser
Javascript?

Oh, I dunno, lots of reasons….

This guy Brendan Eich wrote Javascript in 10 days or so.

You thought images in Mosaic made the web explode?
Javascript - KABLOOEY!

Suddenly you could do all kinds of terrible things!

JavaScript - it gets better...

Well eventually it gets better.

Remember that war?

Well part of fighting meant implementing JavaScript
differently in IE and Netscape. So something that you
wrote worked great in Netscape but not at all in IE.
Inverse applied of course.

And there was no console.

So debugging was interesting. Yeah...interesting.

jQuery!

jQuery wasn’t the first Library. It’s just the one you know
about because it won another kind of battle.

There were quite a few libraries back in in 2006 when
John Resig released jQuery.

Why did it prevail with options like MooTools, Prototype,
and a plethora of other libraries to choose from?

It was small and it was easy to learn.

AND IT SOLVED THE INCONSISTENCIES BETWEEN
BROWSERS REGARDING JS IMPLEMENTATION!!!

“jQuery is great.”

- Douglas Crockford
Author of Javascipt: The Good Parts

who typically doesn’t like much of anything...

AJAX!

We’re out of order here. AJAX was
coined before jQuery came about.
Jesse James Garrett coined the term
in early 2005 predating jQuery by
almost a year.

Not that it was easy to use by any
stretch. XML was preferred at the
time - it took a spell for JSON to really
catch on.

AJAX = Asynchronous Javascript +
XML

No reload is your pal!

No not this….

JSON

This file format has extended well past the front end at
this point. A precursor to both jQuery and AJAX,
Douglas Crockford wrote the spec.

The fact that it’s easily read by humans, easy to parse,
and lightweight footprint suggests it’ll be around for
some time to come.

SPAs!!!

Single Page Applications.

No full page reload! Header and footer don’t change so
why reload em?!?!

AJAX and JSON making everything so easy!

Wait. This is NOT easy. It’s actually pretty
complicated…

Well, not impossible or anything but it’s a lot different
than the old way of doing things.

No not this….

Frameworks!!!!!!!

So managing all this complexity must require a
framework right?

Well, if the number of options for Frontend Frameworks
is any indicator - the answer is a resounding Yes!

Not the case though. There are lots of ways to manage
complexity. Hoisting it onto an opensource (or paid for)
solution just moves it somewhere else.

Which isn’t bad if you have a use case for it. But
framework for frameworks sake is not good.

The Present

Browser Convergence

It all kinda “works” now.

Microsoft, Mozilla, Google, Apple, Opera are all
implementing standards in a similar fashion so variance
in coding for each has dropped considerably.

Still a market for those that code in the old way though
as legacy apps run by corporations will be a while before
they update to modern browser standards.

But so long as you don’t have a user base using the
older browsers - there is no reason to code for them.

From https://caniuse.com

https://caniuse.com

A new framework every damn day...

The most frustrating part of it? Having lived through the
Library wars that jQuery won it’s really hard to determine
who’s going to be the winner. The fact that a new
Framework probably just got published isn’t helping
either.

Fortunately things seem to be settling down on
this front.

Performance!

Speed matters. It always has but now
we’ve got business metrics to further
enforce the notion.
https://wpostats.com/ has years of
data showing how faster sites earn
more revenue.

It’s a funny thing to watch though as in
the dial up days, a whole page might
be 160kb maximum. Now there are
multiple images that weigh that much.

So balance is still something we fight
for.

https://wpostats.com/

Accessibility!

This one has been a passion of mine
for years. It’s not a hard thing to do,
until it is. Like performance, making it
a priority is a balancing act where
success is not guaranteed today.

It’s getting better though, with
webaim.org , aXe, Lighthouse, and
several other players encouraging
good practice and legal departments
paying more attention based on recent
case law - the web is becoming more
accessible.

Mobile First!

It was a mantra in UX/Design a few years ago but it’s

finally catching on everywhere.

Mobile traffic was minimal 8 years ago but it makes up

more than 50% of traffic on many brands.

So designs are less frequently coming to us as desktop

but instead as mobile first!

Speaking of Mobile - mustn’t forget Apps! While Native

vs Web is always debated regarding where to put

emphasis - both have their place and success in the

market depends on having presence in both.
In 2015, the Pew Research Center found that 64%

of American adults owned a smartphone of
some kind, up from 35% in 2011.

http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/

Componentize all the Things!

Any Framework worth its salt has a built in notion and
practice around Components.

Components encourage best practice and composable
user interfaces.

A Front-End component can be expressed as a
rendering function that accepts attributes and produces
a visual representation to the user.

By building components - the hope is that we have
portable, reusable, easy to isolate and upgrade bits that
will improve our work and workflows.

Build stacks for build stacks...

It’s not just flat .css, .js, and .html files anymore.
Honestly, it never truly was. But for a time we pushed
the complexity of putting it all together into other
systems. This is no longer the case. With Node and all
the packages one might find on NPM, the front end got
harder to put together than many UI developers were
accustomed to.

Fortunately, the tools are getting smarter and easier to
use. It’s just a different mindset for many but such is
development where our approaches must always evolve
in order to remain relevant.

JAMstack

What up Netlify!

The JAMstack is not about specific technologies. It’s a
new way of building websites and apps that delivers
better performance, higher security, lower cost of
scaling, and a better developer experience.

https://jamstack.org/

What we didn’t cover:

SEO, Flash, Macromedia,
Dreamweaver, slices, <blink>,
spacer.gif, box model issues in
browsers, the box model,
Cascading Style Sheets,
Microsoft Frontpage, iPads and
touch, AOL, GeoCities, Yahoo!,
blogs, Wordpress, imagemaps,
applets, iFrames, front end
validation, XSS or any security
really, Jakob Nielsen, ui_builder,
ui-built, the DOM, Fonts, NODE!

And so much more...

Vue and You

You…

● Are utterly exhausted by the number of
choices available in building a View layer

● For all the things discussed earlier, and all
the things we didn’t discuss, you want to
make a good choice but have a lot of
other good choices to make too

You, yes you.

● Do you need to get something up and
running quickly?

● Does that something have some
ambiguity and scope that has you wanting
a few decisions made for you already?

● Might make an App, might just make a
page, might do a few different things
together

● Want to use forward thinking and modern
architecture in your Front-End / View
layer?

Getting there

● To be responsible for a whole
organizations direction – know how to
weigh options.

● Read All The Articles (impossible – read
enough)

● Be comfortable getting it wrong

● Stars on Github
● Maintainers
● Usability
● Developer enthusiasm

React is cool right?

● So Very Cool!
● But it’s Gen1 and some of it’s getting a bit

crusty b/c compatibility
● FLOW? JSX? Both have some

questionability while noble in their
creation.

● Only solved the license problem* recently

● You will have any difficulty in finding
people with experience in React.

● Hiring them is another story…
● React is certainly not a bad choice and I

don’t diss shops that do use it, especially
those that waited to adopt after the
license problem*

*To those that argue it was never a problem, I say that as engineers we should
make sustainable choices with minimal jeopardy to our code base. If a legal battle
with a behemoth like Facebook seems sustainable, I’m entertained and will admit I
lack your bravery.

Angular is Google so must be great!

● Having written a lot of now unsupported
code, directing developers to write a lot of
unsupportable code, I’m bitter.

● It’s not a bad platform, but it’s opinionated
and heavy.

● If you’re a Java shop – think about it,
because Miško is rather sharp and
invented the framework – and he was very
Java when he did

● https://killedbygoogle.com/

https://killedbygoogle.com/

{{ Framework Invented Yesterday }}

● Maybe. ● What’s your use-case and are you ready to
justify the time spent on beta tech?

Vue and You and You!

Why?

Shortest Answer:

Small footprint - fast performance – developers
developers developers.

Evan You resembles John Resig.

Ok, maybe not entirely

!=

History is a good teacher

● Jason Hoffman recently wrote “Yet Another Javascript
Framework” (https://css-tricks.com/yet-another-javascript-
framework/) that does a much better job of delving into the
details of ‘the old days’ than I had hoped to.

● Yes I DID start my deck with In The Beginning but feel no shame
since I had started working this deck prior to his article!

● Prototype
● jQuery
● MooTools

https://css-tricks.com/yet-another-javascript-framework/

Size and Speed

● Funny how history even escapes the
writers (me in this case)

● Not that much difference in size for
MooTools and jQuery

● Performance comparable as well

● So it was (?) maintainers and
contributors?

● jQuery had the lower barrier of entry –
easier to comprehend and run with

Evan You

● Inventor of Vue
● He developed in Angular, decided he

wanted to take the best parts, and some
from React, and make Vue

● Remind you of Resig and Prototype?

@youyuxi

https://twitter.com/youyuxi

Evan You

● Prolific
● Boundless in contribution and community

building
● Has a clear vision of how to move this

project forward
● Not ruled by corporate ownership

(probably – Patreon is what it is)

● Amazing trajectory for Versions in
declaring what’s coming and when

● Incredible uptick in usage according to
Stackoverflow

● So many Stars in GIT!

Enough about You already…

● So slides are fun but what about coding?

● Let’s look at what it takes to get a Vue
instance up

● And a default folder structure….
● And an HTTP request library…
● And a premade component library based

on Googles Material Design…

● This is going to take WAAAAY more time
than we have, isn’t it?

Live Coding Happens Here

● Ok – so it’s pre-recorded –history is a
good teacher and if history teaches
anything it’s that if something can go
wrong it will. So if the video fails we
actually will try to live code. Alternately, if
the live coding failed, I couldn’t make a
video…

● Some things we learned:

● You really can insist on State too soon
● Use a-la-carte from Vuetify from the get-

go or you’re going to have to rewrite some
tests

● I can’t even express how quick and easy it
was to build a form with Vuetify, complete
with validation – what in the old days
would have taken a week took a few hours
of fun

Pretty cool huh?

● But I could have done the same thing in
React using Gatsby.

● But I could have done the same thing with
x using y

● So really, does it matter?
● Perhaps not today, but it will someday

when there might be a ‘winning’
framework. And finding developers to
work on your code is always easier when
it’s common across orgs

● Ultimately, we win regardless of choice

○ Because we’re developing components

○ Because we’re pursuing best practices

○ Because we’re Accessible and Performant
● So even if I haven’t convinced you that

Vue is for you – I hope you at least make
choices that further a better internet for
everyone.

