
Application Integration in Cloud Native and
Microservices Landscapes

Kasun Indrasiri
Author of ”Microservices for the Enterprise”, Director-Integration Architecture at WSO2

About Me..
• Director - Integration Architecture at WSO2
• Author “Microservices for the Enterprise”, “Beginning

WSO2 ESB”
• Product Manager : WSO2 Enterprise Integrator
• Committer at Apache
• Founder : SF Bay Area “Microservices, APIs and

Integration” meetup

https://www.amazon.com/Microservices-Enterprise-Designing-Developing-Deploying/dp/1484238575/
https://www.meetup.com/microservices-apis-integration-meetup/

What is Cloud native?
• Cloud native apps are composed of microservices or

serverless functions
• Packaged in containers.
• Runs on a Continuous Delivery model.
• Adaptive governance.

Image : https://www.eweek.com/cloud/red-hat-s-eight-steps-to-cloud-native-applications

Integrating Cloud native apps?
• Cloud native application
– A set of interconnected microservices or serverless

functions.

Image : https://www.jitterbit.com/blog/integrating-the-modern-hybrid-cloud-architecture/

From ESB to ‘Smart-endpoints and Dumb Pipes’
• Using an ESB for integration
• API Gateway to expose your APIs

From ESB to ‘Smart-endpoints and Dumb Pipes’
• Smart endpoints and dumb pipes

From ESB to ‘Smart-endpoints and Dumb Pipes’
• Bringing back ’point to point’ integration… again?

Building Smart-endpoints
• Why it is hard?

– Capabilities that ESB provided has to be implemented at each service
level.

– Integration complexity is not reduced but dispersed across services.
– Proliferation of services makes it even more harder.

Service Mesh
• A application network infrastructure to build cloud native

apps.

Service Mesh vs ESB?
• Service Mesh is NOT a distributed ESB.

Z

Cloud native application integration
requirements

Requires a cloud native runtime

• Kubernetes native: Runs smoothly within
Docker/K8s.

• Startup time and resource consumption.
• Seamless integration with the cloud native

ecosystem.

Service Orchestrations (Active compositions)
• A given service invokes one or more other services to fulfill a

business use case.

Service Choreography (Reactive compositions)

• Services communicates using event driven
architecture.

Service Choreography/Reactive
compositions

• Event Sourcing
– Persist each state changing events of an entity as a sequence of

events.
– All such events are stored in an event bus and consumers can derive

the state by processing a sequence of events.

Service Choreography/Reactive
compositions

• CQRS
– Command Query Responsibility Segregation.
– CRUD model is not always feasible.
– Split the common data model into query and command models.

Protocols abstractions

• Building applications using disparate protocols.
– HTTP, gRPC, GraphQL, Web Sockets, Web Hooks
– Kafka, NATS, AMQP
– FTP, SFTP
– TCP, Rsocket

Integration Patterns
• Forking, Joining, Splitting, Looping, and Aggregation

of messages or service calls.
• Some of the Enterprise Integration Patterns (EIPs) are

now implemented at each smart endpoint.

https://www.enterpriseintegrationpatterns.com/

Resiliency
• Network is unreliable.. Now and forever!
• Not all apps runs on top of a service mesh
• Resiliency may be coupled to the business logic of

the service
• Patterns

– Timeout, Retry, Circuit Breaker, Fail-fast, Bulk-head

Message Delivery Semantics
• Store and forward.
• Persistent delivery.
• Idempotent messaging.

Type Conversions
• Message type mapping and transformations.
– JSON, XML, ProtoBuf, Avro
– Implemented graphically or programmatically.

• E.g. WSO2 Enterprise Integrator – Data Mapper

https://github.com/wso2/micro-integrator

APIs, Events and Streams
• APIs
• Events
• Streams

Integrating with SaaS and legacy on-prem
• Integration with SaaS (e.g. Salesforce)
• Proprietary and legacy systems (e.g. SAP)

Workflows and SAGAs
• Long running processes
• Compensation and distributed transactions
– SAGA

Technologies for cloud native application
integration

Integration Frameworks
• Camel-K
• WSO2 Micro integrator
• Spring Integration

https://github.com/wso2/micro-integrator

Application Development Frameworks and
languages

• Spring Boot, Vert.x
• Ballerina.io, Go lang, Node
• Micronaut, Quarkus.io

https://ballerina.io/

How WSO2 helps?

Summary
• Application integration is everywhere.
• Service Mesh is not for application integration.
• Selecting the best of breed technologies for

application integration.

