
PRESENTED BY: Dave McAllister

Connected Systems and
Distributed Request Tracing

The cloud makes things
easier, which makes

things harder.

Breaking News: The World isn’t getting Simpler

Image from https://microservices.io/patterns/microservices.html

Mobile App

Browser Storefront
WebApp

API Gateway Account Service Account DB

Inventory Service Inventory DB

Shipping Service Shipping DB

“A distributed system is one in which the failure of
a computer you didn't even know existed can

render your own computer unusable.”
– Leslie Lamport, 1987

Connected Systems are
Complex Systems

So what is Observability

Observability:
the measure of how well internal states of a system

can be inferred from knowledge of its external outputs.

or sometimes: basically monitoring, on Chuck Norris setting

or: knowing the unknowable while questioning the known (?)

“You see, but you do not observe.”
Sir Arthur Conan Doyle
A Scandal in Bohemia“You see, but you do not observe.”
Sir Arthur Conan Doyle
A Scandal in Bohemia

“You see, but you do not observe.”
Sir Arthur Conan Doyle
A Scandal in Bohemia

Observability is not one dimensional
● Recall “Internal States Inferred from External Outputs”

○ Observability is a property of the system. Not a tool.

● Should consist of logs, monitoring, events/tracing
● Should include elements of metrics and time
● Should cross boundaries

○ Apps
○ Services
○ Disciplines

Anything that slows you down is bad

Lions and Tigers and Bears, Oh My
(Or Logs, Dashboards and Tracing)

Observability is a signal to noise problem

Compute and Storage

TIME SERIES

Logs

Metrics

Operational Data

FRONT-END PROCESSOR

Traces

Traces

Logs

Metrics

Distributed Request Tracing

BFF: Tracing and Logs

Linking tracing and its high-volume, high-
cardinality data to log search
and metrics extracts even more value

service1
Trace Id : 1, Span Id : 1

service2
Trace Id : 1, Parent Id : 1, Span Id : 2

service3
Trace Id : 1, Parent Id : 2, Span Id : 3

service2
Trace Id : 1, Parent Id : 2, Span Id : 4

Distributed Request Tracing
brings events into causal order

Basically this is another way of aggregating logs and metrics

▪ When was the event? How long did
it take?

▪ How do I know it was slow?

▪ Why did it take so long?

▪ Which microservice was
responsible?

Terminology

A span is the smallest unit in a trace
• A single HTTP request.

• A database query.
• A message execution in a queue system.
• A lookup from a key/value store.

OpenCensus: instrumentation spec and libraries by
Google

Common
Interface to get
stats and
traces from
your apps

Different
exporters
to persist
your data

14

Span Elements

● span_id : unique identifier in a trace
● trace_id : determine its trace
● parent_id : describe a hierarchy
● labels : set of key/value pairs

Span Context : set of value that will be propagated

Logs : Provide unique “WTF” information

service1
Trace Id : 1, Span Id : 1

service4
Trace Id : 1, Parent Id : 2, Span Id : 4

service2
Trace Id : 1, Parent Id : 1, Span Id : 2

service3
Trace Id : 1, Parent Id : 2, Span Id : 3

Tracers

▪ Tracers add logic to create unique trace ID
▪ Trace ID is generated when the first request is made
▪ Span ID is generated as the request arrives at each microservice

▪ Tracers have instrumentation or sampling policy
▪ Tracers execute in your production apps

You still need logs!
• The Original Instrumentation
• Provide unique details
• Help determine the Why, not just the what or when

B3-Propagation (original name of Zipkin: BigBrotherBird.)

Do we need a
standard?

18

• Applications can be written using different languages but at the end you need
to build one single trace. We need to agree on a common standard/protocol.

• If you use a widely supported standard you can avoid vendor lock-in.

19 © 2017 InfluxData. All rights reserved.

OpenTracing

log

Parent Span

20

Span Context / Baggage

Child

Child Span

log log
log

Spans - Basic unit of timing and causality. Can be tagged with key/value pairs.
Logs - Structured data recorded on a span.
Span Context - serializable format for linking spans across network boundaries.

Carries baggage, such as a request and client IDs.
Tracers - Anything that plugs into the OpenTracing API to record information.

OT engines
Metrics (Prometheus)
Logging

Child

log log

Fits to scale apps

OpenTracing
API

application logic

µ-service frameworks

Lambda functions

RPC & control-flow frameworks

existing instrumentation

tracing infrastructure

main()

I N S T A N A

J a e g e r

microservice process

OpenCensus

OpenCensus

Libraries for
distributed tracing
and metrics

• Java, Go, Node,
Python, C++, C#,
PHP, Ruby, Erlang

• Tracing, metrics,
context
propagation for
every endpoint

• APIs for defining
custom metrics,
spans, sampling,
etc.

Full implementation +
out of the box
integrations

• Not just an API;
no competing
implementations

• Integrations
enable automatic
tracing, metrics
collection, context
propagation for
each endpoint

Export telemetry to
your backend of
choice

• Send traces and
metrics to
Stackdriver,
Prometheus,
Zipkin, Jaeger,
etc.

• Can export to
multiple backends
at once; different
teams can use
different tools

Example Deployment

spanner (api)

cartservice
(.net core)

payment
(node)

frontend (go)

mobile
app

jaeger

stackdriver

prometheus

USERS SERVICES BACKENDS

HTTP

gRPC

custom

Since last year: production ready

Java

Most mature
OpenCensus
support. Supports
HTTP, GRPC, JDBC,
MongoDB, Jetty,
Serverlets

Go

Go has full API
surface and supports
okhttp, GRPC, SQL,
Redis

node.js

Node.js has
integrations with
HTTP, gRPC

Python

Django, Flask, GC Client
Libs, gRPC, http, MySQL,
PostgreSQL,

pymongo, PyMySQL,
Pyramid, requests,
SQLAlchemy

Other languages

Languages feature matrix

Java (PR) Go (PR) Node.js (PR) Python (PR) .Net C++ Erlang PHP Ruby

Tracing

Stats ☐ ☐

Tags ☐ ☐

Metrics ☐ ☐ ☐ ☐ ☐

Context
propagation

W3C
standard ☐ ☐

Find more and detailed feature matrices on opencensus.io

https://opencensus.io

Logging spec

Logs are an important signal for observability. The power of
OpenCensus is to aggregate, filter and sample logs in a context of
other signals.

1. Correlating logs with distributed trace context and tags and
scope logs via OpenCensus tags API.

2. Having the OpenCensus agent ingest existing third and first-
party logs from existing sources and send them to a backend.

3. Creating an API that developers use to write first-party log
statements. This API would provide benefits versus existing
logging frameworks like Log4J, but does not seek to replace
them.

Correlation
context on logs

Ingest logs into
agent

Logging API and
metadata

1

2

3

OpenCensus & OpenTracing
merger

New name, but not a third
project
- Full merger
- A single community
- A single set of integrations!
- Technical committee is

overseeing API merger
- Find out more on the

OpenCensus blog and at
Kubecon EU

Play with it for yourself

Hipster Store: https://github.com/GoogleCloudPlatform/microservices-demo

http://35.238.163.103/
https://github.com/GoogleCloudPlatform/microservices-demo

Wnat to get involved?

● Get involved:
○ https://github.com/census-instrumentation

● Join the conversation in Gitter:
○ census-instrumentation

FAQ 1: Can I store traces for everything, everywhere?

At your own risk…
➔ Really high cardinality
➔ High write throughput
Databases like InfluxDB, Cassandra, MongoDB are a better
option than MySQL, Postgres but it always depends on
traffic and amount of data.

In the context of databases, cardinality refers to the uniqueness of data values
contained in a column. High cardinality means that the column contains a large
percentage of totally unique values. Low cardinality means that the column
contains a lot of “repeats” in its data range.

FAQ 2: I already log stuff, isn’t that good enough?

Actually, if your logs are set for request ID’s, it’s pretty darn
good

Summary

• Observability requires deep insights into
increasingly complex architectures

• Integrated toolsets will deliver important
improvements in team productivity

• Make sure the technology you choose is able to
support these requirements at the scale,
performance, and cost effectiveness today’s
challenges require

Questions?
or

Drop by Booth #3
to chat in depth

