=SCALYR

Connected Systems and
Distributed Request Tracing

PRESENTED BY:

=SCALYR

The cloud makes things
casler, which makes
things harder.

Breaking News: The World isn’t getting

Mobile App

Browser

AP| Gateway

Storefront
WebApp

&

Account Service

v

Inventory Service

&

Shipping Service

Simpler

Cross-cutting concerns Testing

Motivating Solution -
Pattern Pattern Single Service per ¥
Host : - =
SolutionA -~ ----» Solution B ». 3 ‘ ‘Service Integration
4 -Conlracl Test
I Specifi
pe: .)

- »” Service
Data e Multiple Services 3 Externaliz o Component Test
=% per host configuration | -+ Vo

Deployment .~ 2

Audit logging

i

A Application
- it metrics
3 Health check
Service : tracking
. . o o Distributed
- Observability
Account DB Core Microservice SO
architecture B
Decompose by
business capability .
. .% . API gateway Server-side page
fragment ul
Inventory B2 composition
Communication ‘
Security
% | - : I
Messaging 2
Shipping DB :| Client-side discovery

Discovery

Image from https://microservices.io/patterns/microservices.html

=SCALYR

Connected Systems are
Complex Systems

"A distributed system is one in which the failure of
a computer you didn't even know existed can

render your own computer unusable.”
— Leslie Lamport, 1987

=SCALYR

So what is Observability

Observability:
the measure of how well internal states of a system

can be inferred from knowledge of its external outputs.
or sometimes: basically monitoring, on Chuck Norris setting

or: knowing the unknowable while questioning the known (?)

"“You see, but you do not observe.”

Sir Arthur Conan Doyle
A Scandal in Bohemia

=SCALYR
Observability is not one dimensional

e Recall “Internal States Inferred from External Outputs”
o Observability is a property of the system. Not a tool

e Should consist of logs, monitoring, events/tracing

e Should include elements of metrics and time
e Should cross boundaries

o Apps
o Services

o Disciplines

Anything that slows you down is bad

=SCALYR

Lions and Tigers and Bears, Oh My
(Or Logs, Dashboards and Tracing)

=SCALYR

Observability is a signal to noise problem

Operational Data

FRONT-END PROCESSOR

.........................

—_—_——— - - - - —

Metrics

‘—.—"—.—)‘—,—L.Jueuau,—m,—m,—’

EEEEEBB8E

S

Compute and Storage

TIME SERIES

=SCALYR

Distributed Request Tracing

=SCALYR

BFF: Tracing and Logs

servicel
Traceld:1,Spanid: 1

service2
Traceld: 1, ParentId: 1, Spanid: 2

service3 service2
Traceld: 1, ParentId: 2, Spanid: 3 Traceld: 1, ParentId: 2, Span Id: 4

Linking tracing and its high-volume, high-
cardinality data to log search
and metrics extracts even more value

=SCALYR

Distributed Request Tracing
brings events into causal order

INSPECT TRACE]
. Distributed Trace of profile ttime: Nov 21,2018, 11:26 AM | Duration 204ms
= When was the event? How long did ot o e
. » profile e 192ms
it take? e et e
» fetchRecord
INSPECT TRACE
» issueTableQuery o
1 H OW d O I kn OW it WaS S I Ow’? » queryTable Distributed Trace of album Starttme: Nov 21, 2018, 11:22 AM ation: 49.688s
’ » issueTableQuery » album ‘ 49,6885)
> queryTable » album appserve at java. lang. Thread. run(Thread. java: 748)
. . » issueTableQuery &
= Why did it take so long? e L2
» issueTableQuery « » fetchRecof
» queryTable » issueTableQu 1
" " " at java.util.concurrent.ThreadPoolExecutor. runWorker(ThreadPc itor. java; u“ﬂ,
= \Which microservice was b quenTabl Er e

21/Nov/2018:19:23:09 40000 (ERROR] Failed re-initializing network card,
(st

828100134, "elapsed" 0, "spanld" s 37d0470a-051c-426e-a1b1-8OSBAOGBIIFE" "act ion” "start”, "operation” "photo”, "tags": ("

21/Nov/2018:19:23:10.134 40000 START photo! , user=ud942388, photo=al64337

responsible?
LTl A TR NE

ore.Asserts.assert: "Assertion failure: Network interrupts resolved”
435)

Basically this is another way of aggregating logs and metrics

=SCALYR

Terminology

A span is the smallest unit in a trace

A single HTTP request.
A database query.
A message execution in a queue system.

A lookup from a key/value store. f - \ o ——

=SCALYR

Common
Interface to get
stats and
traces from
your apps

).

Different
exporters
to persist

your da\

=SCALYR

Span Elements

e span_id : unique i
e trace id: determine its trace

e parent_id : describe a hierarchy

e labels : set of key/val

Parent Id : 1
Span Context : set of valyé that will be progpagated

Logs : Provide unigtie “WTF” infermation

ParentId : 2

ParentId : 2

=SCALYR

Tracers

Tracers add logic to create unique trace ID

Trace ID is generated when the first request is made

Span ID is generated as the request arrives at each microservice
= Tracers have instrumentation or sampling policy

Tracers execute in your production apps

You still need logs!

« The Original Instrumentation
* Provide unique details
* Help determine the Why, not just the what or whe

=SCALYR

B3-Propagation (original name of Zipkin: BigBrotherBird.)

Client Span Server Span
TraceContext	Http Request Headers	TraceContext
l		I
	Traceld	
	ParentSpanId	
	4 >	} >
	sSpanId	
	sampled	
I L J	L J	L J I
L J L]

=SCALYR

HOW STANDARDS PROLIFERATE:
(62 A/C CHARGERS, CHARACTER ENCOOINGS, INSTANT MESSAGING, ETC)

M?! RiDICULOUS!
WE NEED To DEVELOP
SITUATION: || S\ WVERAL SWORD | | SiTUATION:
THERE ARE USE. CASES. VERH! THERE ARE
I4 COMPETING \ O ' 15 COMPETING
STANDPRDS. x STANDPRDS.

. Applications can be written using different languages but at the end you need
to build one single trace. We need to agree on a common standard/protocol.

If you use a widely supported standard you can avoid vendor lock-in.

U

O
»
E
N
T
RAC
IN

G

=SCALYR

OpenTracing

g Farent Span Span Context / Baggage Child Span a

|0!| |0g |09
Child log

b da

Spans - Basic unit of timing and causality. Can be tagged with key/value pairs.
Logs - Structured data recorded on a span.
Span Context - serializable format for linking spans across network boundaries.
Carries baggage, such as a request and client IDs.
Tracers - Anything that plugs into the OpenTracing API to record information.
OT engines
Metrics (Prometheus)

Logging

20

=SCALYR

Fits to scale apps

microservice process

application logic

u-service frameworks

Lambda functions

RPC & control-flow frameworks

existing instrumentation

OpenTracing

API

Z1PKIN

== LIGHTSTEP

tracing infrastructure

Jaeger

ﬂ@»pdﬂﬁ/c

NSTANA

N

=SCALYR

OpenCensus @

Libraries for Full implementation + Export telemetry to
distributed tracing out of the box your backend of
and metrics integrations choice

 Java, Go, Node, * Not just an API; « Send traces and
Python, C++, C#, no competing metrics to
PHP, Ruby, Erlang implementations Stackdriver,

« Tracing, metrics, * Integrations Prometheus,
context enable automatic Zipkin, Jaeger,
propagation for tracing, metrics etc.
every endpoint collection, context + Can export to

* APIs for defining propagation for multiple backends
custom metrics, each endpoint at once; different
spans, sampling, teams can use

etc. different tools

HTTP

! . -
gRPC e
mobile
....... »
app

USERS SERVICES BACKENDS

=SCALYR

Since last year: production ready

Java Go node.js
Most mature Go has full API Node.js has
OpenCensus surface and supports integrations with

support. Supports okhttp, GRPC, SQL, HTTP, gRPC

HTTP, GRPC, JDBC, Redis
MongoDB, Jetty,
Serverlets

Other languages

®© ©

| v

ERLANG

4

Python

Django, Flask, GC Client
Libs, gRPC, http, MySQL,
PostgreSQL,

pymongo, PyMySQL,
Pyramid, requests,
SQLAIchemy

=SCALYR

Languages feature matrix

Find more and detailed feature matrices on opencensus.io

Tracing

Stats]]
Tags

Metrics Il] Ol] L]
Context

propagation

wW3cC

standard D |:|

https://opencensus.io

=SCALYR

Logging spec

Logs are an important signal for observability. The power of
OpenCensus is to aggregate, filter and sample logs in a context of
other signals.

1. Correlating logs with distributed trace context and tags and
scope logs via OpenCensus tags API.
2. Having the OpenCensus agent ingest existing third and first-

party logs from existing sources and send them to a backend.

3. Creating an API that developers use to write first-party log
statements. This API would provide benefits versus existing
logging frameworks like Log4dJ, but does not seek to replace
them.

Correlation
context on logs

Ingest logs into
agent

Logging API and
metadata

=SCALYR

OpenCensus & OpenTracing

merger

T

New name, but not a third
project

Full merger

A single community

A single set of integrations!
Technical committee is
overseeing APl merger
Find out more on the
OpenCensus blog and at
Kubecon EU

=SCALYR

Play with it for yourself

EmailService Load Generator

AdService

HTTP HTTP CartService

'

PaymentService |« CheckoutService

Frontend
Cache
(redis)
ShippingService
\/
CurrencyService
ProductCatalogService |« RecomendationService

External API

H | DSte I StO '€ nhttps://github.com/GoogleCloudPlatform/microservices-demo

http://35.238.163.103/
https://github.com/GoogleCloudPlatform/microservices-demo

=SCALYR

Whnat to get involved?

e Get involved:
O https://github.com/census-instrumentation

e Join the conversation in Gitter:
O census-instrumentation

=SCALYR

FAQ 1: Can | store traces for everything, everywhere?

At your own risk...

- Really high cardinality
- High write throughput

Databases like InfluxDB, Cassandra, MongoDB are a better
option than MySQL, Postgres but it always depends on
traffic and amount of data.

In the context of databases, cardinality refers to the uniqueness of data values
contained in a column. High cardinality means that the column contains a large
percentage of totally unique values. Low cardinality means that the column
contains a lot of “repeats” in its data range.

=SCALYR

FAQ 2: | already log stuff, isn’'t that good enough?

Actually, if your logs are set for request ID’s, it's pretty darn
good

o web-6 user='ul28453' 26/Apr/2019:17:35:48.570 +0000 begin friends: request=x419187286, user=ul28453
o

o
o
O

(’ appserver—7 status='success' user='ul28453' 26/Apr/2019:17:35:49.572 +0000 END friends: request=x419187286, user=ul28453, timeMs=1001, status=success

appserver—7 user='ul28453' 26/Apr/2019:17:35:48.571 +0000 START friends: request=x419187286, user=ul28453

appserver—7 status='success' 26/Apr/2019:17:35:48.579 +0000 FETCH (MySQL): request=x419187286, table=users, timeMs=8, status=success

appserver—7 status='success' 26/Apr/2019:17:35:48.582 +0000 QUERY (MySQL): request=x419187286, query=SELECT * FROM friends WHERE a = '?7' ORDER BY date DESC limit 1
appserver—7 26/Apr/2019:17:35:48.582 +0000 ***warning: Invalid cache detected for user ul28453 (request=x419187286); rebuilding cache

(’ web-6 status='success' 26/Apr/2019:17:35:49.576 +0000 invoked application server: request=x419187286, timeMs=1006, status=success
0 web-6 user='ul28453' 26/Apr/2019:17:35:49.577 +0000 end friends: request=x419187286, user=ul28453, timeMs=1007

=SCALYR

Summary

« QObservability requires deep insights into
increasingly complex architectures

* Integrated toolsets will deliver important
improvements in team productivity

« Make sure the technology you choose is able to OO
support these requirements at the scale, | T, s
performance, and cost effectiveness today’s
challenges require

