
Robot DJs

Better Spotify Playlists
through Music Theory and
Discrete Optimization

Cedric Hurst | @divideby0 | https://spantree.net 1

Let's Try an Experiment...

Cedric Hurst | @divideby0 | https://spantree.net 2

More on that later.

Cedric Hurst | @divideby0 | https://spantree.net 3

whoami?

|> Consultant
|> Founder
|> Speaker
|> (Co-)Author

Cedric Hurst | @divideby0 | https://spantree.net 4

Spantree

Cedric Hurst | @divideby0 | https://spantree.net 5

whoelseami

|> Musician
|> Composer
|> Spotify Addict
|> Recovering DJ

Cedric Hurst | @divideby0 | https://spantree.net 6

This is a talk about Music
Theory.

Cedric Hurst | @divideby0 | https://spantree.net 7

Cedric Hurst | @divideby0 | https://spantree.net 8

Cedric Hurst | @divideby0 | https://spantree.net 9

sargogahtyP

Cedric Hurst | @divideby0 | https://spantree.net 10

Cedric Hurst | @divideby0 | https://spantree.net 11

More on that later...

Cedric Hurst | @divideby0 | https://spantree.net 12

Remember when I said I
was a recovering DJ?

Cedric Hurst | @divideby0 | https://spantree.net 13

Let's Talk about College.

Cedric Hurst | @divideby0 | https://spantree.net 14

My Brief Career as a
Classical Composer

Cedric Hurst | @divideby0 | https://spantree.net 15

Cedric Hurst | @divideby0 | https://spantree.net 16

My Slightly Longer Career
as a MIDI Musician

Cedric Hurst | @divideby0 | https://spantree.net 17

Cedric Hurst | @divideby0 | https://spantree.net 18

But then College Happened

Cedric Hurst | @divideby0 | https://spantree.net 19

Cedric Hurst | @divideby0 | https://spantree.net 20

Cedric Hurst | @divideby0 | https://spantree.net 21

Cedric Hurst | @divideby0 | https://spantree.net 22

Cedric Hurst | @divideby0 | https://spantree.net 23

Beyonce - Baby Boy

Cedric Hurst | @divideby0 | https://spantree.net 24

Chemical Brothers - Block
Rockin' Beats

Cedric Hurst | @divideby0 | https://spantree.net 25

How Did That Work?

Cedric Hurst | @divideby0 | https://spantree.net 26

Cedric Hurst | @divideby0 | https://spantree.net 27

Remember Pythagoras?

Cedric Hurst | @divideby0 | https://spantree.net 28

Cedric Hurst | @divideby0 | https://spantree.net 29

Cedric Hurst | @divideby0 | https://spantree.net 30

B♭ = Perfect Fifth of D♭

Cedric Hurst | @divideby0 | https://spantree.net 31

Why does this matter?

Cedric Hurst | @divideby0 | https://spantree.net 32

Because the brain likes to
do math (but not too much

of it).

Cedric Hurst | @divideby0 | https://spantree.net 33

Cedric Hurst | @divideby0 | https://spantree.net 34

Cedric Hurst | @divideby0 | https://spantree.net 35

But what does that have to
do with Beyoncé?

Cedric Hurst | @divideby0 | https://spantree.net 36

Cedric Hurst | @divideby0 | https://spantree.net 37

Cedric Hurst | @divideby0 | https://spantree.net 38

Cedric Hurst | @divideby0 | https://spantree.net 39

Let's See This on the
Keyboard

Cedric Hurst | @divideby0 | https://spantree.net 40

While We're Over There...
Remember that Experiment
We Did at the Beginning of

the Talk?

Cedric Hurst | @divideby0 | https://spantree.net 41

Cedric Hurst | @divideby0 | https://spantree.net 42

The sliders simulate pipes
at different intervals of the

notes being played

Cedric Hurst | @divideby0 | https://spantree.net 43

This is a Talk about
Playlists.

Cedric Hurst | @divideby0 | https://spantree.net 44

What matters (musically) to a playlist?

|> Tone
|> Timimg
|> Timbre

Cedric Hurst | @divideby0 | https://spantree.net 45

Let's talk about tone.

Cedric Hurst | @divideby0 | https://spantree.net 46

But before we do that, let's
talk about modes.

Cedric Hurst | @divideby0 | https://spantree.net 47

Jacob Collier

Cedric Hurst | @divideby0 | https://spantree.net 48

Cedric Hurst | @divideby0 | https://spantree.net 49

Cedric Hurst | @divideby0 | https://spantree.net 50

Cedric Hurst | @divideby0 | https://spantree.net 51

Cedric Hurst | @divideby0 | https://spantree.net 52

But almost no one owns
their media anymore.

Cedric Hurst | @divideby0 | https://spantree.net 53

Today, almost everyone
listens to their music in the

cloud.

Cedric Hurst | @divideby0 | https://spantree.net 54

This is good news for
playlists because they're

pervasive now.

Cedric Hurst | @divideby0 | https://spantree.net 55

People are even writing Ph.D theses about it.

Cedric Hurst | @divideby0 | https://spantree.net 56

But we can't do fancy tricks
in Spotify... like play more
than one song at a time.

Cedric Hurst | @divideby0 | https://spantree.net 57

So what can we do?

Cedric Hurst | @divideby0 | https://spantree.net 58

We can reorder the tracks!

Cedric Hurst | @divideby0 | https://spantree.net 59

Cedric Hurst | @divideby0 | https://spantree.net 60

This is a talk about Discrete
Optimization.

Cedric Hurst | @divideby0 | https://spantree.net 61

Cedric Hurst | @divideby0 | https://spantree.net 62

Cedric Hurst | @divideby0 | https://spantree.net 63

Discrete
Having a finite number of
possibile solutions.

Cedric Hurst | @divideby0 | https://spantree.net 64

Optimization
Searching those options to find
one that closely matches a set of
rules.

Cedric Hurst | @divideby0 | https://spantree.net 65

So what are our rules?

|> Songs should play exactly once.
|> Some song transitions should be to songs in the

same key.
|> Other songs transitions should be to adjacent keys on

the Camelot Scale.
|> Songs transitions should avoid drastic tempo or

timbre changes.

Cedric Hurst | @divideby0 | https://spantree.net 66

But the songs are all in the
cloud.

Cedric Hurst | @divideby0 | https://spantree.net 67

This is a talk about API
Integration.

Cedric Hurst | @divideby0 | https://spantree.net 68

Cedric Hurst | @divideby0 | https://spantree.net 69

Let's Get a Spotify Playlist.

{
 "description": "Having friends over for dinner? Here's the perfect playlist.",
 "tracks": {
 "items": [
 {
 "track": {
 "album": { "name": "Untamed", "release_date": "2015-12-11" },
 "artists": [{ "name": "Cam" }],
 "name": "Burning House",
 "popularity": 64,
 }
 },
 ...
]
 }
}

Cedric Hurst | @divideby0 | https://spantree.net 70

That's great and all, but
what about the key?

Cedric Hurst | @divideby0 | https://spantree.net 71

Spotify M&A Team to the Rescue

Cedric Hurst | @divideby0 | https://spantree.net 72

Turns out we can get "Audio Features" now too.

{
 "type": "audio_features",
 "id": "11dFghVXANMlKmJXsNCbNl",
 "key": 2,
 "mode": 1,
 "tempo": 114.944,
 "time_signature": 4,
 "loudness": -2.743,
 "danceability": 0.696,
 "energy": 0.905,
 "speechiness": 0.103,
 "acousticness": 0.011,
 "instrumentalness": 0.000905,
 "liveness": 0.302,
 "valence": 0.625
}

Cedric Hurst | @divideby0 | https://spantree.net 73

Key/Mode = D Major

{
 "type": "audio_features",
 "id": "11dFghVXANMlKmJXsNCbNl",
 "key": 2,
 "mode": 1,
 "tempo": 114.944,
 "time_signature": 4,
 "loudness": -2.743,
 "danceability": 0.696,
 "energy": 0.905,
 "speechiness": 0.103,
 "acousticness": 0.011,
 "instrumentalness": 0.000905,
 "liveness": 0.302,
 "valence": 0.625
}

Cedric Hurst | @divideby0 | https://spantree.net 74

We also get some other helpful stuff for Optimization.

{
 "type": "audio_features",
 "id": "11dFghVXANMlKmJXsNCbNl",
 "key": 2,
 "mode": 1,
 "tempo": 114.944,
 "time_signature": 4,
 "loudness": -2.743,
 "danceability": 0.696,
 "energy": 0.905,
 "speechiness": 0.103,
 "acousticness": 0.011,
 "instrumentalness": 0.000905,
 "liveness": 0.302,
 "valence": 0.625
}

Cedric Hurst | @divideby0 | https://spantree.net 75

Ok, so we have the data. But
how do we optimize?

Cedric Hurst | @divideby0 | https://spantree.net 76

Cedric Hurst | @divideby0 | https://spantree.net 77

Let's model our Domain

data class Track(
 @Json(name = "album") var album: Album,
 @Json(name = "artists") var artists: List<Artist>,
 @Json(name = "duration_ms") val durationMs: Int,
 @Json(name = "explicit") val explicit: Boolean,
 @Json(name = "features") val features: AudioFeatures,
 @Json(name = "id") val id: String,
 @Json(name = "name") val name: String,
 ...
)

interface PlaylistTrack {
 @Json(name = "track")
 var track: Track?
}

Cedric Hurst | @divideby0 | https://spantree.net 78

Now let's define an PlanningEntities and Anchors

data class FirstPlaylistTrack(
 @Json(name = "track") override var track: Track?
) : PlaylistTrack

@PlanningEntity
data class RestPlaylistTrack(
 @Json(name = "track")
 override var track: Track? = null,

 @PlanningVariable(
 graphType = PlanningVariableGraphType.CHAINED,
 valueRangeProviderRefs = ["firstTrack", "restTracks"]
)
 var previousTrack: PlaylistTrack? = null,
) : PlaylistTrack

Cedric Hurst | @divideby0 | https://spantree.net 79

Cedric Hurst | @divideby0 | https://spantree.net 80

The FirstPlaylistTrack remains fixed as the Anchor.

data class FirstPlaylistTrack(
 @Json(name = "track") override var track: Track?
) : PlaylistTrack

@PlanningEntity
data class RestPlaylistTrack(
 @Json(name = "track")
 override var track: Track? = null,

 @PlanningVariable(
 graphType = PlanningVariableGraphType.CHAINED,
 valueRangeProviderRefs = ["firstTrack", "restTracks"]
)
 var previousTrack: PlaylistTrack? = null,
) : PlaylistTrack

Cedric Hurst | @divideby0 | https://spantree.net 81

TheRestPlaylistTracks have a previousTrack value
which mutates during planning.

data class FirstPlaylistTrack(
 @Json(name = "track") override var track: Track?
) : PlaylistTrack

@PlanningEntity
data class RestPlaylistTrack(
 @Json(name = "track")
 override var track: Track? = null,

 @PlanningVariable(
 graphType = PlanningVariableGraphType.CHAINED,
 valueRangeProviderRefs = ["firstTrack", "restTracks"]
)
 var previousTrack: PlaylistTrack? = null,
) : PlaylistTrack

Cedric Hurst | @divideby0 | https://spantree.net 82

During Optimization, we experiment with alternative
planning variables on each planning entity.

data class FirstPlaylistTrack(
 @Json(name = "track") override var track: Track?
) : PlaylistTrack

@PlanningEntity
data class RestPlaylistTrack(
 @Json(name = "track")
 override var track: Track? = null,

 @PlanningVariable(
 graphType = PlanningVariableGraphType.CHAINED,
 valueRangeProviderRefs = ["firstPlaylistTrackRange"]
)
 var previousTrack: PlaylistTrack? = null,
) : PlaylistTrack

Cedric Hurst | @divideby0 | https://spantree.net 83

Now let's build our Planning Solution

@PlanningSolution
data class PlaylistSolution (
 @ProblemFactProperty
 val firstTrack: FirstPlaylistTrack,

 @ValueRangeProvider(id = "firstTrack")
 val firstTrackRange: List<FirstPlaylistTrack> = listOf(firstTrack),

 @ValueRangeProvider(id = "restTracks")
 @PlanningEntityCollectionProperty
 val restTracks: List<RestPlaylistTrack>,

 @ProblemFactCollectionProperty val artists: List<Artist>,
 @ProblemFactCollectionProperty val albums: List<Album>,

 @PlanningScore(bendableHardLevelsSize = 1, bendableSoftLevelsSize = 2)
 var score: BendableBigDecimalScore
)

Cedric Hurst | @divideby0 | https://spantree.net 84

The Planning Solution defines the ranges of possible
previousTrack values for our RestPlaylistTracks

@PlanningSolution
data class PlaylistSolution (
 @ProblemFactProperty
 val firstTrack: FirstPlaylistTrack,

 @ValueRangeProvider(id = "firstTrack")
 val firstTrackRange: List<FirstPlaylistTrack> = listOf(firstTrack),

 @ValueRangeProvider(id = "restTracks")
 @PlanningEntityCollectionProperty
 val restTracks: List<RestPlaylistTrack>,

 @ProblemFactCollectionProperty val artists: List<Artist>,
 @ProblemFactCollectionProperty val albums: List<Album>,

 @PlanningScore(bendableHardLevelsSize = 1, bendableSoftLevelsSize = 2)
 var score: BendableBigDecimalScore
)

Cedric Hurst | @divideby0 | https://spantree.net 85

It also defines some Facts which can be referenced by
our solver but don't mutate.

@PlanningSolution
data class PlaylistSolution (
 @ProblemFactProperty
 val firstTrack: FirstPlaylistTrack,

 @ValueRangeProvider(id = "firstTrack")
 val firstTrackRange: List<FirstPlaylistTrack> = listOf(firstTrack),

 @ValueRangeProvider(id = "restTracks")
 @PlanningEntityCollectionProperty
 val restTracks: List<RestPlaylistTrack>,

 @ProblemFactCollectionProperty val artists: List<Artist>,
 @ProblemFactCollectionProperty val albums: List<Album>,

 @PlanningScore(bendableHardLevelsSize = 1, bendableSoftLevelsSize = 2)
 var score: BendableBigDecimalScore
)

Cedric Hurst | @divideby0 | https://spantree.net 86

And finally a score which is used to track the quality of
the "working solution" during solving.

@PlanningSolution
data class PlaylistSolution (
 @ProblemFactProperty
 val firstTrack: FirstPlaylistTrack,

 @ValueRangeProvider(id = "firstTrack")
 val firstTrackRange: List<FirstPlaylistTrack> = listOf(firstTrack),

 @ValueRangeProvider(id = "restTracks")
 @PlanningEntityCollectionProperty
 val restTracks: List<RestPlaylistTrack>,

 @ProblemFactCollectionProperty val artists: List<Artist>,
 @ProblemFactCollectionProperty val albums: List<Album>,

 @PlanningScore(bendableHardLevelsSize = 1, bendableSoftLevelsSize = 2)
 var score: BendableBigDecimalScore
)

Cedric Hurst | @divideby0 | https://spantree.net 87

Scores have slots which can be used to assign priority.

[0]hard/[-55/-200]soft

|> [0]hard = no feasibility issues with the solution
|> [-55/-200]soft = some things are still suboptimal

at various degrees of severity

Cedric Hurst | @divideby0 | https://spantree.net 88

Let's write some rules

Cedric Hurst | @divideby0 | https://spantree.net 89

Let's make sure we only play a song once

rule "Should play each song only once"
 when
 RestPlaylistTrack(
 $t: track,
 previousTrack != null,
 $p: previousTrack
)
 RestPlaylistTrack(
 track != $t,
 previousTrack == $p
)
 then
 scoreHolder.addHardConstraintMatch(kcontext, 0, new BigDecimal(-1));
end

Cedric Hurst | @divideby0 | https://spantree.net 90

First we look for a track that has a previous track
defined

rule "Should play each song only once"
 when
 RestPlaylistTrack(
 $t: track,
 previousTrack != null,
 $p: previousTrack
)
 RestPlaylistTrack(
 track != $t,
 previousTrack == $p
)
 then
 scoreHolder.addHardConstraintMatch(kcontext, 0, new BigDecimal(-1));
end

Cedric Hurst | @divideby0 | https://spantree.net 91

Then we check to see if there's another track in the
solution that points to that same previous track

rule "Should play each song only once"
 when
 RestPlaylistTrack(
 $t: track,
 previousTrack != null,
 $p: previousTrack
)
 RestPlaylistTrack(
 track != $t,
 previousTrack == $p
)
 then
 scoreHolder.addHardConstraintMatch(kcontext, 0, new BigDecimal(-1));
end

Cedric Hurst | @divideby0 | https://spantree.net 92

Anytime that happens, we add a hard constraint
violation with a penalty of -1.

rule "Should play each song only once"
 when
 RestPlaylistTrack(
 $t: track,
 previousTrack != null,
 $p: previousTrack
)
 RestPlaylistTrack(
 track != $t,
 previousTrack == $p
)
 then
 scoreHolder.addHardConstraintMatch(kcontext, 0, new BigDecimal(-1));
end

Cedric Hurst | @divideby0 | https://spantree.net 93

Cedric Hurst | @divideby0 | https://spantree.net 94

But what about key rules?

Cedric Hurst | @divideby0 | https://spantree.net 95

Let's add a shadow variable!

@PlanningEntity
data class RestPlaylistTrack(
 @Json(name = "track")
 override var track: Track? = null,

 @PlanningVariable(
 graphType = PlanningVariableGraphType.CHAINED,
 valueRangeProviderRefs = ["firstPlaylistTrackRange", "rest"]
)
 var previousTrack: PlaylistTrack? = null,

 @CustomShadowVariable(
 variableListenerClass = PreviousTrackUpdatedListener::class,
 sources = [PlanningVariableReference(variableName = "previousTrack")]
)
 var keyDistance: Int? = null
)

Cedric Hurst | @divideby0 | https://spantree.net 96

And now for the listener...

class PreviousTrackUpdatedListener : VariableListener<RestPlaylistTrack> {
 override fun afterEntityAdded(scoreDirector: ScoreDirector<*>, playlistTrack: RestPlaylistTrack) {
 update(scoreDirector, playlistTrack)
 }

 override fun afterVariableChanged(scoreDirector: ScoreDirector<*>, playlistTrack: RestPlaylistTrack) {
 update(scoreDirector, playlistTrack)
 }

 private fun update(scoreDirector: ScoreDirector<*>, playlistTrack: RestPlaylistTrack) {
 var distance: Int? = null
 playlistTrack.track?.features?.key?.let { thisKey ->
 playlistTrack.previousTrack?.track?.features?.key?.let { previousKey ->
 val noteDistance = Math.abs(
 thisKey.camelotPosition!! - previousKey.camelotPosition!!
)
 val modeDistance = if (thisKey != previousKey) 1 else 0
 distance = (if (noteDistance < 6) noteDistance else noteDistance - (noteDistance % 6)) + modeDistance
 }
 }
 if(playlistTrack.keyDistance != distance) {
 scoreDirector.beforeVariableChanged(playlistTrack, "keyDistance")
 playlistTrack.keyDistance = distance
 scoreDirector.afterVariableChanged(playlistTrack, "keyDistance")
 }
 }
}

Cedric Hurst | @divideby0 | https://spantree.net 97

This part lets us know whenever stuff happens with the
planning entity.

class PreviousTrackUpdatedListener : VariableListener<RestPlaylistTrack> {
 override fun afterEntityAdded(scoreDirector: ScoreDirector<*>, playlistTrack: RestPlaylistTrack) {
 update(scoreDirector, playlistTrack)
 }

 override fun afterVariableChanged(scoreDirector: ScoreDirector<*>, playlistTrack: RestPlaylistTrack) {
 update(scoreDirector, playlistTrack)
 }

 private fun update(scoreDirector: ScoreDirector<*>, playlistTrack: RestPlaylistTrack) {
 var distance: Int? = null
 playlistTrack.track?.features?.key?.let { thisKey ->
 playlistTrack.previousTrack?.track?.features?.key?.let { previousKey ->
 val noteDistance = Math.abs(
 thisKey.camelotPosition!! - previousKey.camelotPosition!!
)
 val modeDistance = if (thisKey != previousKey) 1 else 0
 distance = (if (noteDistance < 6) noteDistance else noteDistance - (noteDistance % 6)) + modeDistance
 }
 }
 if(playlistTrack.keyDistance != distance) {
 scoreDirector.beforeVariableChanged(playlistTrack, "keyDistance")
 playlistTrack.keyDistance = distance
 scoreDirector.afterVariableChanged(playlistTrack, "keyDistance")
 }
 }
}

Cedric Hurst | @divideby0 | https://spantree.net 98

This is the fancy business logic we need to execute to
get the camelot distance (because its a circle).

class PreviousTrackUpdatedListener : VariableListener<RestPlaylistTrack> {
 private fun update(scoreDirector: ScoreDirector<*>, playlistTrack: RestPlaylistTrack) {
 var distance: Int? = null
 playlistTrack.track?.features?.key?.let { thisKey ->
 playlistTrack.previousTrack?.track?.features?.key?.let { previousKey ->
 val noteDistance = Math.abs(
 thisKey.camelotPosition!! - previousKey.camelotPosition!!
)
 val modeDistance = if (thisKey != previousKey) 1 else 0
 distance = (if (noteDistance < 6) noteDistance else noteDistance - (noteDistance % 6)) + modeDistance
 }
 }
 if(playlistTrack.keyDistance != distance) {
 scoreDirector.beforeVariableChanged(playlistTrack, "keyDistance")
 playlistTrack.keyDistance = distance
 scoreDirector.afterVariableChanged(playlistTrack, "keyDistance")
 }
 }
}

Cedric Hurst | @divideby0 | https://spantree.net 99

This part tells OptaPlanner we've changed
somethingbrew install asciinema2gif.

class PreviousTrackUpdatedListener : VariableListener<RestPlaylistTrack> {
 private fun update(scoreDirector: ScoreDirector<*>, playlistTrack: RestPlaylistTrack) {
 var distance: Int? = null
 playlistTrack.track?.features?.key?.let { thisKey ->
 playlistTrack.previousTrack?.track?.features?.key?.let { previousKey ->
 val noteDistance = Math.abs(
 thisKey.camelotPosition!! - previousKey.camelotPosition!!
)
 val modeDistance = if (thisKey != previousKey) 1 else 0
 distance = (if (noteDistance < 6) noteDistance else noteDistance - (noteDistance % 6)) + modeDistance
 }
 }
 if(playlistTrack.keyDistance != distance) {
 scoreDirector.beforeVariableChanged(playlistTrack, "keyDistance")
 playlistTrack.keyDistance = distance
 scoreDirector.afterVariableChanged(playlistTrack, "keyDistance")
 }
 }
}

Cedric Hurst | @divideby0 | https://spantree.net 100

So now that we've done all the heavy lifting in
Kotlintown, our key rule is dead simple.

rule "Key distance should be kept to a minimum"
 when
 RestPlaylistTrack(
 keyDistance != null,
 keyDistance > 0,
 $kd: keyDistance
)
 then
 scoreHolder.addSoftConstraintMatch(kcontext, 0, new BigDecimal(-$kd*$kd));
end

Cedric Hurst | @divideby0 | https://spantree.net 101

Since most playlists
contain songs in more than

one key, the score will
never be zero.

Cedric Hurst | @divideby0 | https://spantree.net 102

But OptaPlanner will try to
find the most efficient path
to minimize unpleasant and

drastic key changes.

Cedric Hurst | @divideby0 | https://spantree.net 103

How does it do that?

Cedric Hurst | @divideby0 | https://spantree.net 104

QC0 -> C2

Cedric Hurst | @divideby0 | https://spantree.net 105

Let's examine all possible moves.

Cedric Hurst | @divideby0 | https://spantree.net 106

The sequence of moves impact the next viable move.

Cedric Hurst | @divideby0 | https://spantree.net 107

OptaPlanner calculates a random series of moves...
Selecting a subset that (eventually) make the score better.

Cedric Hurst | @divideby0 | https://spantree.net 108

So how does this apply to
playlists?

Cedric Hurst | @divideby0 | https://spantree.net 109

Let's watch a solver in action!

Cedric Hurst | @divideby0 | https://spantree.net 110

Cedric Hurst | @divideby0 | https://spantree.net 111

Let's dissect a log line.

CH step (850),
time spent (1534),
score ([0]hard/[-17456/-3092]soft),
selected move count (1),
picked move (
 Oneohtrix Point Never - RayCats (8A) {
 null -> St. Vincent - Strange Mercy (7B)
 }
)

Cedric Hurst | @divideby0 | https://spantree.net 112

First we start with an empty playlist...

...and run a Construction Heuristic to select previous
tracks

CH step (0),
time spent (257),
score (-850init/[-850]hard/[-9/0]soft),
selected move count (1),
picked move (
 Kaki King - I Never Said I Love You (9A) {
 null -> St. Vincent - Strange Mercy (7B)
 }
)

Cedric Hurst | @divideby0 | https://spantree.net 113

We do this one track at a time...

and pick the track that makes the overall solution score
better.

CH step (0),
time spent (257),
score (-850init/[-850]hard/[-9/0]soft),
selected move count (1),
picked move (
 Kaki King - I Never Said I Love You (9A) {
 null -> St. Vincent - Strange Mercy (9A)
 }
)

Cedric Hurst | @divideby0 | https://spantree.net 114

This step decided to transition from St Vincent to Kaki
King
this makes sense because they're in nearby keys.

CH step (0),
time spent (257),
score (-850init/[-850]hard/[-9/0]soft),
selected move count (1),
picked move (
 Kaki King - I Never Said I Love You (9A) {
 null -> St. Vincent - Strange Mercy (7A)
 }
)

Cedric Hurst | @divideby0 | https://spantree.net 115

In this phase, we can't undo or reconsider moves.
Once you've decided on a transition, you're stuck with it for a while.

CH step (850),
time spent (1300),
score ([0]hard/[-17456/-3092]soft),
selected move count (1),
picked move (
 Oneohtrix Point Never - RayCats (8A) {
 null -> St. Vincent - Strange Mercy (7B)
 }
)

Cedric Hurst | @divideby0 | https://spantree.net 116

If this is all we do, we'll
quickly hit a Local
Optimum.
What if that Kaki King track was
the only track that worked after
Unknown Mortal Orchestra?
Cedric Hurst | @divideby0 | https://spantree.net 117

Let's do a Local Search!

LS step (251),
time spent (534861),
score ([0]hard/[-4142/-1222]soft),
new best score ([0]hard/[-4142/-1222]soft),
accepted/selected move count (29/221),
picked move (
 Passion Pit - Little Secrets (7B) {
 Fleet Foxes - Bedouin Dress (9B)
 } <-tailChainSwap-> Steve Reich - Mallet Quartet: III. Fast (3A) {
 Ali Farka Touré - Yer Bounda Fara (5B)
 }
)

Cedric Hurst | @divideby0 | https://spantree.net 118

After a (long) while, we end up with an optimized
solution.

Solving ended: time spent (601024),
best score ([0]hard/[-3475/-1088]soft),
score calculation speed (112/sec),
phase total (2),
environment mode (REPRODUCIBLE)

Cedric Hurst | @divideby0 | https://spantree.net 119

For most playlists, we'll
never get a perfect solution.

Cedric Hurst | @divideby0 | https://spantree.net 120

But OptaPlanner can tell us what's suboptimal.
This is thanks to Drools and its awesome rule algorithm.

ConstraintViolationReporter:28
Key distance should be kept to a minimum ->
 violations: 625,
 score impact: [-2174/0]soft

- Violation 0, score impact: ([0]hard/[-49/0]soft)
 - Max Tundra - Will Get Fooled Again (1B) -> Wilco - Impossible Germany (9A)
- Violation 1, score impact: ([0]hard/[-25/0]soft
 - Erykah Badu + DRAM - WiFi (5A) -> Broken Social Scene - Halfway Home (9B)

Cedric Hurst | @divideby0 | https://spantree.net 121

So Let's See It in Action!

Cedric Hurst | @divideby0 | https://spantree.net 122

This is a talk about failure.

Cedric Hurst | @divideby0 | https://spantree.net 123

Let's Pull Some Data On-Demand from Spotify.

Cedric Hurst | @divideby0 | https://spantree.net 124

Let's Slap Some GraphQL on Top.

Cedric Hurst | @divideby0 | https://spantree.net 125

Let's Persist Some Data.

Cedric Hurst | @divideby0 | https://spantree.net 126

Let's Grab a Playlist.

Cedric Hurst | @divideby0 | https://spantree.net 127

Now Let's Optimize.

Cedric Hurst | @divideby0 | https://spantree.net 128

What's that extract path?

{
 "data": {
 "optimizePlaylist": {
 "id": "cjv2qy5gv001w0783091fxnzc",
 "extract_path":
 "https://s3.amazonaws.com/spotfire-extracts/bb0a483632e90cc5.tar.gz",
 "status": "INITIALIZED"
 }
 },
 "extensions": {}
}

Cedric Hurst | @divideby0 | https://spantree.net 129

Let's take a peek at that file.

Cedric Hurst | @divideby0 | https://spantree.net 130

Now comes the part that's not hooked up yet.

serverless invoke --function solver -p "src/test/payloads/collier.json"
2019-04-29 20:28:04 DEBUG DefaultLocalSearchPhase:133 - LS step (2), time spent (2918), score ([0]hard/[-6367/-1093]soft), new best score ([0]hard/[-6367/-1093]soft), ...
2019-04-29 20:28:05 DEBUG DefaultLocalSearchPhase:133 - LS step (3), time spent (3090), score ([0]hard/[-6274/-1082]soft), new best score ([0]hard/[-6274/-1082]soft), ...

Cedric Hurst | @divideby0 | https://spantree.net 131

Coming Soon

Cedric Hurst | @divideby0 | https://spantree.net 132

Thanks

Spantree (esp Mari, Eli + Justin)
GOTO Conference
Spotify + The Echo Nest Teams
* OptaPlanner, Apollo and Prisma teams for great open
source tools

Cedric Hurst | @divideby0 | https://spantree.net 133

