
OR: HOW I LEARNED TO STOP WORRYING
AND LOVE TESTING IN PRODUCTION

DATA-DRIVEN ENGINEERING

Andy Cirillo - Conversant Media

WHAT IS DATA-DRIVEN
ENGINEERING?

DATA-DRIVEN ENGINEERING

Engineers using data produced by
production systems in a disciplined
and methodical manner to guide the
development of new software.

▸ Scientific Method

▸ Formal Experimentation

▸ Statistical Analysis

DATA-DRIVEN ENGINEERING

NOT GOING TO TALK ABOUT:
▸ Data Science

▸ Data Engineering

▸ Data-Driven Product Management

AM GOING TO TALK ABOUT:
▸ Software Engineers Using Data to do Their (Own) Jobs

Better

DATA-DRIVEN ENGINEERING

WHY NOW?

▸ 100s of thousands, or even 100s of
millions of users.

▸ Large-scale distributed systems
with lots and lots of identical
servers.

▸ Tools and infrastructure to collect,
store and analyze massive event-
oriented data sets.

DW

SERVER SERVER SERVER

SERVER SERVER

DATA-DRIVEN ENGINEERING

BASIC INGREDIENTS

▸ Structured Log Format

▸ CSV, Apache Avro

▸ log4j, slf4j

▸ Infrastructure for Collecting, Storing
and Querying Distributed Log Data

▸ Kafka, Flume

▸ RDBMS, Data Warehouse, Hadoop

▸ Infrastructure for Partial Production
Deployments

event_log : {

 // basic stuff  
 timestamp : long,  
 event_type : short,  
 user_id : long,  
 session_id : long,  
 transaction_id : long,  
 response_code : short,  
 server_id : int,  
 response_time : long,

 // optional extras  
 skip_mask : int,  
 diagnostic_blob : text

 // application-specific  
 …

}

TESTING IN PRODUCTION
PART I:

DATA-DRIVEN ENGINEERING

EXAMPLE: A TYPICAL TEST SCENARIO

https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

Scenario 1: Refunded items should be returned to stock

Given that a customer previously bought a black sweater from me
And I have three black sweaters in stock.
When they return the black sweater for a refund
Then I should have four black sweaters in stock.

Source: Wikipedia

Scenario 1: Refunded items should be returned to stock

For all customers, items, and tn, tm, such that n < m,
Given that the customer bought the item from me at time tn
And I have x of those items in stock at time tm.
When they return the item for a refund at time tm
Then I should have x + 1 of those items in stock at time tm+1.

https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License

DATA-DRIVEN ENGINEERING

▸ In general, most tests are a mix of driver code and
assertion code.

▸ In practice, complete assertion code is often relatively
achievable, complete driver code, however, is
somewhere between hard and mathematically
impossible.

DATA-DRIVEN ENGINEERING

STRATEGY:

1. Logically split tests into driver code and assertion code.

2. Write test assertions against log output instead of directly
accessing state. (Cor. Everything that needs to be tested
needs to be logged.)

3. In QA, run drivers and assertions, in production run just
the assertions.

DATA-DRIVEN ENGINEERING

▸ Add sku, store_count to
the event log.

▸ Log the current value of
the store with every
event.

▸ Split tests into “drivers”
and “assertions.”

▸ Queries take the place of
assertions.

▸ You can run the same
queries in production!

select ts, store_count,
 case
 when event_type = 'purchase' then -1
 when event_type = 'return' then 1
 else 0
 end expected
from event_log
where ts >= current_date
and sku = ‘black sweater’
order by ts;

ts store_count expected

1556307290 100 -1

1556307378 99 -1

1556307386 98 -1

1556307450 97 -1

1556307457 96 -1

1556307465 97 1

1556307472 96 -1

1556307479 95 -1

WELL I, FOR ONE, DON’T TEST
MY CODE IN PRODUCTION
BECAUSE I HAVE UNIT TESTS!

thinks somebody in the audience…

DATA-DRIVEN ENGINEERING

DATA-DRIVEN ENGINEERING

TOP SIX REASONS WHY YOU SHOULD TEST IN PRODUCTION:

1. You don’t know all the scenarios.

2. Your imagination sucks.

3. Your product manager’s imagination sucks.

4. Things can change.

5. You still don’t know all the scenarios.

6. Production is different.

DATA-DRIVEN ENGINEERING

▸ This is a distributed
system though…

▸ Store count is only
eventually consistent…

▸ Have to relax the
requirement a bit…

▸ But not too much!

select ts, store_count,
 case
 when event_type = 'purchase' then -1
 when event_type = 'return' then 1
 else 0
 end expected
from event_log
where ts >= current_date
and sku = ‘black sweater’
order by ts;

ts store_count expected

1556307290 100 -1

1556307378 99 -1

1556307386 98 -1

1556307450 97 -1

1556307457 96 -1

1556307465 98 1

1556307472 96 -1

1556307479 95 -1

DATA-DRIVEN ENGINEERING

select max(store_count) - min(store_count) = sum(expected)
from (
 select ts, store_count,
 case
 when event_type = 'purchase' then -1
 when event_type = 'return' then 1
 else 0
 end expected
 from event_log
 where ts >= current_date
 and sku = ‘black sweater’
);

DATA-DRIVEN ENGINEERING

select min(result) from (
 select sku, max(store_count) - min(store_count) = sum(expected) result
 from (
 select sku, ts, store_count,

 case
 when event_id = 'purchase' then -1
 when event_id = 'return' then 1
 else 0
 end expected

 from event_log
 where ts >= current_date
)
 group by sku
);

DATA-DRIVEN ENGINEERING

CONCLUSIONS OF PART I

▸ By writing your test assertions against log output instead of
internal state, you can use your QA tests in production.

▸ Production provides many, many, more test scenarios than you
could possibly cover in QA.

▸ Some things can only be adequately tested in Production:

▸ Non-Functional Requirements

▸ Open-Ended Requirements

▸ External Behaviors and Dependencies

FROM CONTINUOUS INTEGRATION
TO CONTINUOUS EXPERIMENTATION

PART II:

DATA-DRIVEN ENGINEERING

SCENARIO:

▸ At some point around 4/15, the return
rate for black sweaters jumped to
nearly twice the usual rate.

▸ High return rates hurt margins,
leading to negative financial impacts
for the company.

▸ New software was released on 4/15,
but nothing exceptional.

▸ No one has complained about return
rates for any products other than black
sweaters.

Overall Return Rate

Return Rate by SKU

Return Rate by SKU

Return Rate by SKU

Return Rate by SKU

DATA-DRIVEN ENGINEERING

select product_img
from sku_product_carousel
where sku = $1;

select product_img
from sku_product_carousel
where sku = $1
order by update_date;

Code Before 4/15

Code After 4/15

Could the change in carousel order be causing
higher return rates for some products?

How can we test this hypothesis?

DATA-DRIVEN ENGINEERING

SCIENTIFIC PROCESS

1. Formulate a Question

2. Define Hypothesis

3. Use Hypothesis to Make Predictions

4. Test Predictions Empirically

5. Refine Hypothesis (Step 2)

6. Draw Conclusions

DATA-DRIVEN ENGINEERING

OBSERVATIONAL STUDY

▸ If the change in the order of carousel images is what
caused the change in return rates, then it would stand to
reason that any products for which the order did not
change, would not have seen a change in return rates.

▸ We can now look for products with only one image, or for
which database order coincides with update_date.

DATA-DRIVEN ENGINEERING

CONTROLLED EXPERIMENT

▸ Make a code change that uses a different order.

1. Revert to the original order.

2. Sort by a different key.

3. Use a random order.

▸ Deploy the changed code such that:

▸ Some users get the original code (Control Group)

▸ Some users get the changed code (Test Group)

DATA-DRIVEN ENGINEERING

DEFINING TEST AND CONTROL GROUPS

▸ Deploy changed code to one
server, use server_id to break out
the data sets (canary).

▸ Use transaction_id to tie returns
back to the original purchase.

▸ Branch logic in code, split on
user_id.

▸ Use diagnostic_blob.

▸ What about Before and After???

event_log : {

 // basic stuff  
 timestamp : long,  
 event_type : short,  
 user_id : long,  
 session_id : long,  
 transaction_id : long,  
 response_code : short,  
 server_id : int,  
 response_time : long,

 // optional extras  
 skip_mask : int,  
 diagnostic_blob : text

 // application-specific  
 sku : string,  
 store_count : int,

}

CONTINUOUS
EXPERIMENTATION

DATA-DRIVEN ENGINEERING

SOFTWARE ENGINEERING PROCESS

GATHER
REQUIREMENTS

DESIGN
IMPLEMENT

TEST
DEPLOY TO

PRODUCTION
NEW PRODUCT

CONCEPT END OF LIFE

User Feedback

DATA-DRIVEN ENGINEERING

SCIENTIFIC PROCESS

DEFINE
HYPOTHESIS

MAKE
PREDICTIONS

RUN
EXPERIMENT

FORMULATE A
QUESTION

DRAW
CONCLUSIONS

Observation

THE GOAL OF THE SCIENTIFIC PROCESS IS TO ANSWER A
QUESTION.

THE GOAL OF THE SOFTWARE ENGINEERING PROCESS IS TO
SOLVE A PROBLEM.

DATA-DRIVEN ENGINEERING

RUN
EXPERIMENT

MAKE
PREDICTIONS

DEFINE
HYPOTHESIS

Observation

GATHER
REQUIREMENTS

DESIGN
IMPLEMENT

TEST
DEPLOY TO

PRODUCTION

User Feedback

NEW PRODUCT
CONCEPT END OF LIFE

DATA-DRIVEN ENGINEERING

CONTINUOUS EXPERIMENTATION - DEVOPS

▸ Must already have very robust CI and CD infrastructure in
place.

▸ Must be able to deploy multiple, arbitrary, versions of
code to production concurrently.

▸ Feature branching helps.

▸ Automated rollbacks.

DATA-DRIVEN ENGINEERING

CONTINUOUS EXPERIMENTATION - CULTURE

▸ Need to be comfortable with writing lots of throwaway code.

▸ Need to build a top-to-bottom culture of experimentation.

▸ Engineers

▸ Product Managers

▸ Stakeholders

▸ Partners/Clients

▸ Need to know what’s off limits.

