
Deliver Results, Not Just Releases:
Control & Observability in CD

Dave Karow
@davekarow

Coming up:

● Who is this guy?

● Definitions

● Role Models

● Takeaways

● Q & A

Want a copy
of this deck?

split.io/results

Who is this guy?
● Unix geek in the 80’s

● Wrapped apps at Sun in the 90’s

● Ran a developer “forum” back when CompuServe was a thing :-)

● PM for developer tools

● PM for synthetic monitoring

● PM for load testing

● Dev Advocate for “shift left” performance testing

● Evangelist for progressive delivery with automated feedback loops

The future is already here
— it's just not very evenly
distributed.

William Gibson

Definitions

Continuous Delivery
From Jez Humble

https://continuousdelivery.com/

...the ability to get changes of all
types—including new features,
configuration changes, bug fixes
and experiments—into
production, or into the hands of
users, safely and quickly in a
sustainable way.

https://continuousdelivery.com/

So what sort of control
and observability are we
talking about here?

Control of
the CD Pipeline?

Nope.

Grégoire Détrez, original by Jez Humble [CC BY-SA 4.0]

Observability of
the CD Pipeline?

https://hygieia.github.io/Hygieia/product_dashboard_intro.html

Nope.

https://hygieia.github.io/Hygieia/product_dashboard_intro.html

If not the pipeline,
what then?

The payload

Whether you call it code,
configuration, or change,
it’s in the delivery, that
we “show up” to others.

Control
of Exposure

...blast radius

...propagation of goodness

...surface area for learning

How Do We Make
Deploy != Release

and
Revert != Rollback

17

Feature Flag
Progressive Delivery Example

0%

10%

20%

50%

100%

18

Feature Flag
Experimentation Example

50% 50%

19

Multivariate example:Simple “on/off” example:

What a Feature Flag Looks Like In Code

treatment = flags.getTreatment(“related-posts”);

if (treatment == “on”) {

 // show related posts

} else {

 // skip it

}

treatment = flags.getTreatment(“search-algorithm”);

if (treatment == “v1”) {

 // use v1 of new search algorithm

} else if (feature == “v2”) {

 // use v2 of new search algorithm

} else {

 // use existing search algorithm

}

Observability
of Exposure

Who have we
released to so far?

How is it going for
them (and us)?

Who Already Does This Well?
(and is generous enough to share how)

LinkedIn
XLNT

● Built a targeting engine that could “split” traffic between

existing and new code

● Impact analysis was by hand only (and took ~2 weeks), so

nobody did it :-(

Essentially just feature flags without automated feedback

LinkedIn early days: a modest start for XLNT

LinkedIn XLNT Today
A controlled release (with

built-in observability)

every 5 minutes

100 releases per day

6000 metrics that can be

“followed” by any

stakeholder: “What

releases are moving the

numbers I care about?”

Guardrail metrics

Lessons learned at LinkedIn
● Build for scale: no more coordinating over email

● Make it trustworthy: targeting and analysis must be rock solid

● Design for diverse teams, not just data scientists

Ya Xu

Head of Data Science, LinkedIn

Decisions Conference 10/2/2018

It increases the odds of
achieving results you can
trust and observations
your teams will act upon.

Why does balancing
centralization (consistency)
and local team control
(autonomy) matter?

Booking.com

● EVERY change is treated as an experiment

● 1000 “experiments” running every day

● Observability through two sets of lenses:

○ As a safety net: Circuit Breaker

○ To validate ideas: Controlled Experiments

Booking.com

Great read

https://medium.com/booking-com-development/moving-fast-breaking-things-and-fixing-them-as-quickly-as-possible-a6c16c5a1185

Booking.com

Booking.com:
Experimentation for asynchronous feature release
● Deploying has no impact on user experience

● Deploy more frequently with less risk to business and users

● The big win is Agility

Booking.com:
Experimentation as a safety net
● Each new feature is wrapped in its own experiment

● Allows: monitoring and stopping of individual changes

● The developer or team responsible for the feature can enable

and disable it...

● ...regardless of who deployed the new code that contained it.

Booking.com: The circuit breaker

● Active for the first three minutes of feature release

● Severe degradation → automatic abort of that feature

● Acceptable divergence from core value of local ownership

and responsibility where it’s a “no brainer” that users are

being negatively impacted

Booking.com: Experimentation as a way to validate ideas

● Measure (in a controlled manner) the impact changes have

on user behaviour

● Every change has a clear objective (explicitly stated

hypothesis on how it will improve user experience)

● Measuring allows validation that desired outcome is achieved

Booking.com: Experimentation to learn faster

The quicker we manage to validate new ideas
the less time is wasted on things that don’t work
and the more time is left to work on things
that make a difference.

In this way, experiments also help us decide
what we should ask, test and build next.

Lukas Vermeer’s
tale of humility

Lukas Vermeer’s
tale of humility

Facebook
Gatekeeper

Taming Complexity

States

Interdependencies

Uncertainty

Irreversibility

https://www.facebook.com/notes/1000330413333156/

https://www.facebook.com/notes/1000330413333156/

Taming Complexity

States

Interdependencies

Uncertainty

Irreversibility

● Internal usage. Engineers can make a change, get feedback

from thousands of employees using the change, and roll it

back in an hour.

● Staged rollout. We can begin deploying a change to a billion

people and, if the metrics tank, take it back before problems

affect most people using Facebook.

● Dynamic configuration. If an engineer has planned for it in

the code, we can turn off an offending feature in production

in seconds. Alternatively, we can dial features up and down in

tiny increments (i.e. only 0.1% of people see the feature) to

discover and avoid non-linear effects.

● Correlation. Our correlation tools let us easily see the

unexpected consequences of features so we know to turn

them off even when those consequences aren't obvious.

Taming Complexity with Reversibility

KENT BECK· JULY 27, 2015

https://www.facebook.com/notes/1000330413333156/

https://www.facebook.com/notes/1000330413333156/

Takeaways

#1 Decouple Deployment
from Release
Deploy is infra
Release is exposing bits to users

45

Sample Architecture and Data Flow

Your App

SDK

Rollout Plan
(Targeting Rules)

For flag, “related-posts”
● Targeted attributes
● Targeted percentages
● Whitelist

treatment = flags.getTreatment(“related-posts”);

if (treatment == “on”) {

 // show related posts

} else {

 // skip it

}

Favor the back-end, but
put them as close to the
location of “facts” you’ll
use for decisions as
possible.

Where should you
implement progressive

delivery controls: front end
or back end?

#2 Build-In Observability
Know what’s rolling out, who is getting what, and why
Align metrics to control plane to learn faster

48

Sample Architecture and Data Flow

Your App

SDK
Impression

Events

For flag, “related-posts”
● At timestamp “t”
● User “x”
● Saw treatment “y”
● Per targeting rule “z”

treatment = flags.getTreatment(“related-posts”);

if (treatment == “on”) {

 // show related posts

} else {

 // skip it

}

49

Sample Architecture and Data Flow

Your Apps

SDK

Metric Events

User “x”
● At timestamp “t”
● did/experienced “x”

External Event Source

1. unique_id (same
user/account id
evaluated by the
feature flag decision
engine.)

2. timestamp of the
observation.

What two pieces of data
make it possible to

attribute system and user
behavior changes to any

deployment?

#3 Going beyond MVP
yields significant benefits
Build for scale: solve for chaos
Make it trustworthy: make it stick
Design for diverse audiences: one source of truth

Q&A

Common Questions
How does this compare to

“A/B testing”?

How long should feature flags

stick around? Don’t they

increase tech debt/dead code?

What’s the connection

between feature flags and

trunk based development?

Doesn’t testing become

harder when there are many

flags in the code?

“Whatever you are, be a
good one.”

Want a copy
of this deck?

split.io/results

