
© 2019-2020, anyscale.com

Ray - Scalability from a Laptop to a Cluster

Dean Wampler - April 20, 2020 - GOTO Chicago
dean@anyscale.com
@deanwampler
https://ray.io
https://anyscale.com

Checkout our online events
this Summer:

https://anyscale.com/events

http://anyscale.com
mailto:dean@anyscale.com
https://twitter.com/deanwampler
https://ray.io
https://anyscale.com
https://anyscale.com/events

@deanwampler

What We’ll Talk About:

● Ray demo
● We’ll get into the mechanics of using

the Ray API
● Why Ray Is Needed
● ML/AI Ray Libraries
● Ray for Microservices

@deanwampler

Demo
● From forthcoming free tutorials:
● Anyscale Academy
● Contact Dean for details:
● dean@anyscale.com

https://github.com/anyscale/academy
mailto:dean@anyscale.com

@deanwampler
U

sa
ge

 %

 2012 2014 2016 2018. 2020

Time

 0

 5

10

15

Two Major Trends Hence, there is a pressing
need for robust, easy to

use solutions for
distributed PythonModel sizes and therefore

compute requirements
outstripping Moore’s Law

Moore’s Law (2x every 18 months)
35x every 18 months!

GPU
CPU

Python growth driven by
ML/AI and other data

science workloads

2013 2014 2015 2016 2017 2018 2019

@deanwampler

Hyperparam
Tuning

The ML Landscape Today

5

Training Model
ServingStreaming SimulationFeaturization

All require distributed
implementations to scale

@deanwampler

Hyperparam
Tuning

The Ray Vision: Sharing a Common Framework

6

Training Model
ServingStreaming SimulationFeaturization

Framework for
distributed Python (and

other languages…)

Domain-specific libraries
for each subsystem

Serve

More libraries
coming soon

@deanwampler

Ray Community

@deanwampler

Community and Resources

● ray.io
● ray.readthedocs.io/en/latest/
● Tutorials (free): Anyscale Academy
● github.com/ray-project/ray.git
● Need help?
● Ray Slack: ray-distributed.slack.com
● ray-dev group

https://ray.io
https://ray.readthedocs.io/en/latest/
https://github.com/anyscale/academy
https://github.com/ray-project/ray.git
http://ray-distributed.slack.com
https://groups.google.com/forum/?nomobile=true#!forum/ray-dev

@deanwampler

Migrating to Ray

@deanwampler

If you’re already using…

● asyncio
● joblib
● multiprocessing.Pool

● Use Ray’s implementations
● Drop-in replacements
● Change import statements
● Break the one-node limitation!

For example, from this:

 from multiprocessing.pool import Pool

To this:

 from ray.util.multiprocessing.pool import Pool

See these blog posts:
https://medium.com/distributed-computing-with-ray/how-to-scale-python-multiprocessing-to-a-cluster-with-one-line-of-code-d19f242f60ff
https://medium.com/distributed-computing-with-ray/easy-distributed-scikit-learn-training-with-ray-54ff8b643b33

https://medium.com/distributed-computing-with-ray/how-to-scale-python-multiprocessing-to-a-cluster-with-one-line-of-code-d19f242f60ff
https://medium.com/distributed-computing-with-ray/easy-distributed-scikit-learn-training-with-ray-54ff8b643b33

@deanwampler

Machine Learning with
Ray-based Libraries

@deanwampler

Hyperparam
Tuning

Ray Libraries

12

Training Model
ServingStreaming SimulationFeaturization

Serve

@deanwampler

Hyperparam
Tuning

Reinforcement Learning - Ray RLlib

13

Training Model
ServingStreaming SimulationFeaturization

Serve

@deanwampler
14

Background: Reinforcement Learning

Decisions
(actions)

Consequences
(observations, rewards)

environmentagent

@deanwampler

Go as a Reinforcement Learning Problem

AlphaGo (Silver et al. 2016)
● Observations:
○ board state

● Actions:
○ where to place the stones

● Rewards:
○ 1 if win
○ 0 otherwise

Decisions (actions)

Consequences
(observations, rewards)

environmentagent

@deanwampler

Growing Number of RL Applications

Industrial
Processes

System
Optimization Advertising Recommendations Finance RL applications

@deanwampler

RLlib: A Scalable, Unified Library for RL

Single-Agent Multi-Agent Hierarchical Offline Batch RL approaches

RLlib

RLlib Training API

PPO IMPALA QMIX Custom
Algorithms...

Distributed Execution with Ray

Industrial
Processes

System
Optimization Advertising Recommendations Finance RL applications

@deanwampler

● gradient-free
○ Augmented Random Search (ARS)
○ Evolution Strategies

● Multi-agent specific
○ QMIX Monotonic Value Factorisation

(QMIX, VDN, IQN)

● Offline
○ Advantage Re-Weighted Imitation Learning

(MARWIL)

Broad Range of Scalable Algorithms

● High-throughput architectures
○ Distributed Prioritized Experience Replay (Ape-X)
○ Importance Weighted Actor-Learner Architecture (IMPALA)
○ Asynchronous Proximal Policy Optimization (APPO)

● Gradient-based
○ Soft Actor-Critic (SAC)
○ Advantage Actor-Critic (A2C, A3C)
○ Deep Deterministic Policy Gradients (DDPG, TD3)
○ Deep Q Networks (DQN, Rainbow, Parametric DQN)
○ Policy Gradients
○ Proximal Policy Optimization (PPO)

https://ray.readthedocs.io/en/latest/rllib-algorithms.html#augmented-random-search-ars
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#evolution-strategies
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#qmix-monotonic-value-factorisation-qmix-vdn-iqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#qmix-monotonic-value-factorisation-qmix-vdn-iqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-re-weighted-imitation-learning-marwil
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-re-weighted-imitation-learning-marwil
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#distributed-prioritized-experience-replay-ape-x
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#importance-weighted-actor-learner-architecture-impala
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#asynchronous-proximal-policy-optimization-appo
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#soft-actor-critic-sac
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-actor-critic-a2c-a3c
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#deep-deterministic-policy-gradients-ddpg-td3
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#policy-gradients
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#proximal-policy-optimization-ppo

@deanwampler

@deanwampler

Diverse Compute Requirements Motivated Creation of Ray!

Decisions (actions)

Consequences
(observations, rewards)

environmentagent

Simulator (game
engine, robot sim,

factory floor sim…)

Neural network
“stuff”

And repeated play,
over and over again,
to train for achieving

the best reward

Complex agent?

@deanwampler

Hyperparam
Tuning

Hyperparameter Tuning - Ray Tune

21

Training Model
ServingStreaming SimulationFeaturization

Serve

@deanwampler

Trivial example:
● What’s the best value for “k” in k-

means??
● k is a “hyperparameter”
● The resulting clusters are

defined by “parameters”

What Is Hyperparameter Tuning?

Source: https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

@deanwampler

Nontrivial Example - Neural Networks

Every number
shown is a

hyperparameter!

How many layers?
What kinds of layers?

@deanwampler

Hyperparameters Are Important for Performance

@deanwampler

Why We Need a Framework for Tuning Hyperparameters

Model training is time-
consuming

Resources are expensive

We want the best model

@deanwampler

tune.run(PytorchTrainable,
 config={
 "model_creator": PretrainBERT,
 "data_creator": create_data_loader,
 "use_gpu": True,
 "num_replicas": 8,
 "lr": tune.uniform(0.001, 0.1)
 },
 num_samples=100,
 search_alg=BayesianOptimization()

)

Tuning + Distributed Training

@deanwampler

Native Integration with TensorBoard HParams

@deanwampler

Resource Aware
Scheduling

Seamless
Distributed Execution

Simple API for
new algorithms

Framework Agnostic

Tune is Built with Deep Learning as a Priority

ray.readthedocs.io/en/latest/tune.html

http://ray.readthedocs.io/en/latest/tune.html

@deanwampler

What about Ray
for Microservices?

@deanwampler

What Are Microservices?

● They partition the domain
● Conway's Law - Embraced
● Separate responsibilities
● Separate management

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

@deanwampler

Conway’s Law - Embraced

● “Any organization that designs a
system will produce a design whose
structure is a copy of the
organization's communication
structure”

● Let each team own and manage the
services for its part of the domain

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

en.wikipedia.org/wiki/Conway's_law

https://en.wikipedia.org/wiki/Conway's_law

@deanwampler

Separate Responsibilities

● Each microservice does “one
thing”, a single responsibility
with minimal coupling to the
other microservices

● (Like, hopefully, the teams are
organized, too…)

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

wikipedia.org/wiki/Single-responsibility_principle

https://en.wikipedia.org/wiki/Single-responsibility_principle

@deanwampler

Separate Management

● Each team manages its own
instances

● Each microservice has a
different number of instances
for scalability and resiliency

● But they have to be managed
explicitly

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2µ-service 1

@deanwampler

Ray Cluster

task/
actortask/

actor
task/
actor

task/
actortask/

actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor
task/
actor

task/
actor

Management - Simplified

● With Ray, you have one
“logical” instance to manage
and Ray does the cluster-
wide scaling for you.

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

@deanwampler

What about Kubernetes (and others…)?

● Ray scaling is very fine grained.
● It operates within the “nodes” of

coarse-grained managers
● Containers, VMs, or physical

machines

Ray Cluster

task/
actortask/

actor
task/
actor

task/
actortask/

actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor
task/
actor

task/
actor

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

Node Node

Node

@deanwampler

Conclusion

● Ray is the new state-of-the-art for distributed computing
● The shortest path from your laptop to the cloud
● Run complex distributed tasks on large clusters from

simple code on your laptop

Serve

@deanwampler

About Anyscale, Inc

● Spun out of U.C. Berkeley
● Making Ray the standard for distributed computing
● We are hiring!
● https://anyscale.com

https://anyscale.com

© 2019-2020, anyscale.com

Questions?

ray.io
anyscale.com - We’re Hiring!
anyscale.com/events
raysummit.org
dean@anyscale.com

http://anyscale.com
https://ray.io
https://anyscale.com
https://anyscale.com/events
http://raysummit.org
mailto:dean@anyscale.com?subject=Follow%20up%20from%20your%20Ray%20talk

@deanwampler

Extra Slides

@deanwampler

Hyperparam
Tuning

Returning to RLlib…

40

Training Model
ServingStreaming SimulationFeaturization

Serve

@deanwampler

Many Practical RL Loop Decompositions

Async DQN (Mnigh et al, 2016)

Actor-
Learner

Actor-
Learner

Actor-
Learner

Param
Server

X <- rollout()
dθ <- grad(L,
X)
sync(dθ)

Ape-X DQN (Horgan et al, 2018)

Learner

Replay

Actor

Actor

Actor

θ <-
sync()
rollout()

X <- replay()
apply(grad(L, X))

@deanwampler

Many Practical RL Loop Decompositions

Async DQN (Mnigh et al, 2016) Ape-X DQN (Horgan et al, 2018)

Actor-
Learner

Actor-
Learner

Actor-
Learner

Param
Server Learner

Replay

Actor

Actor

Actor

Policy πθ(ot)
Trajectory
postprocessor ρθ(X)
Loss L(θ,X)

@deanwampler

Many Practical RL Loop Decompositions

Async DQN (Mnigh et al, 2016) Ape-X DQN (Horgan et al, 2018)

Actor-
Learner

Actor-
Learner

Actor-
Learner

Param
Server Learner

Replay

Actor

Actor

Actor

Policy πθ(ot)
Trajectory
postprocessor ρθ(X)
Loss L(θ,X)

@deanwampler

Many Practical RL Loop Decompositions

A big motivation for Ray:
No existing system effectively met all
the varied demands of RL workloads.

@deanwampler

We Need Abstractions for RL

Good abstractions decompose RL algorithms into
reusable components.

Goals:
● Code reuse across deep learning frameworks
● Scalable execution of algorithms
● Easily implement, compare, and reproduce

algorithms

@deanwampler

Policy Serving

RLlib Policy
Server

Multi-Agent

Actor Network

ActionState

Environment

Actor Network

ActionState

Training in Simulation

General Purpose APIs: Even More Requirements

@deanwampler

Unified Framework for Scalable RL

Distributed PPO

Evolution
Strategies

Ape-X Distributed
DQN, DDPG

