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What We’ll Talk About:

● Ray demo
● We’ll get into the mechanics of using 

the Ray API
● Why Ray Is Needed
● ML/AI Ray Libraries
● Ray for Microservices
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Demo
● From forthcoming free tutorials: 
● Anyscale Academy
● Contact Dean for details:
● dean@anyscale.com

https://github.com/anyscale/academy
mailto:dean@anyscale.com
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Two Major Trends Hence, there is a pressing 
need for robust, easy to 

use solutions for 
distributed PythonModel sizes and therefore 

compute requirements 
outstripping Moore’s Law

Moore’s Law (2x every 18 months)
35x every 18 months!

GPU
CPU

Python growth driven by 
ML/AI and other data 

science workloads

2013            2014          2015          2016          2017           2018           2019
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Hyperparam 
Tuning

The ML Landscape Today

5

Training Model
ServingStreaming SimulationFeaturization

All require distributed 
implementations to scale
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Hyperparam 
Tuning

The Ray Vision: Sharing a Common Framework
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Training Model
ServingStreaming SimulationFeaturization

Framework for 
distributed Python (and 

other languages…)

Domain-specific libraries 
for each subsystem

Serve

More libraries 
coming soon



@deanwampler

Ray Community
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Community and Resources

● ray.io
● ray.readthedocs.io/en/latest/
● Tutorials (free): Anyscale Academy
● github.com/ray-project/ray.git
● Need help?
● Ray Slack: ray-distributed.slack.com
● ray-dev group

https://ray.io
https://ray.readthedocs.io/en/latest/
https://github.com/anyscale/academy
https://github.com/ray-project/ray.git
http://ray-distributed.slack.com
https://groups.google.com/forum/?nomobile=true#!forum/ray-dev
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Migrating to Ray
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If you’re already using…

● asyncio
● joblib
● multiprocessing.Pool

● Use Ray’s implementations 
● Drop-in replacements
● Change import statements 
● Break the one-node limitation!

For example, from this: 
   
  from multiprocessing.pool import Pool 

To this: 

  from ray.util.multiprocessing.pool import Pool 

See these blog posts:  
https://medium.com/distributed-computing-with-ray/how-to-scale-python-multiprocessing-to-a-cluster-with-one-line-of-code-d19f242f60ff 
https://medium.com/distributed-computing-with-ray/easy-distributed-scikit-learn-training-with-ray-54ff8b643b33

https://medium.com/distributed-computing-with-ray/how-to-scale-python-multiprocessing-to-a-cluster-with-one-line-of-code-d19f242f60ff
https://medium.com/distributed-computing-with-ray/easy-distributed-scikit-learn-training-with-ray-54ff8b643b33
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Machine Learning with
Ray-based Libraries
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Hyperparam 
Tuning

Ray Libraries
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Training Model
ServingStreaming SimulationFeaturization

Serve



@deanwampler

Hyperparam 
Tuning

Reinforcement Learning - Ray RLlib
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Training Model
ServingStreaming SimulationFeaturization

Serve
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Background: Reinforcement Learning

Decisions 
(actions)

Consequences
(observations, rewards)

environmentagent
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Go as a Reinforcement Learning Problem

AlphaGo (Silver et al. 2016)
● Observations:
○ board state

● Actions:
○ where to place the stones

● Rewards:
○ 1 if win
○ 0 otherwise

Decisions (actions)

Consequences
(observations, rewards)

environmentagent
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Growing Number of RL Applications

Industrial 
Processes

System 
Optimization Advertising Recommendations Finance RL applications
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RLlib: A Scalable, Unified Library for RL

Single-Agent Multi-Agent Hierarchical Offline Batch RL approaches

RLlib

RLlib Training API

PPO IMPALA QMIX Custom 
Algorithms...

Distributed Execution with Ray

Industrial 
Processes

System 
Optimization Advertising Recommendations Finance RL applications
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● gradient-free
○ Augmented Random Search (ARS)
○ Evolution Strategies

● Multi-agent specific
○ QMIX Monotonic Value Factorisation 

(QMIX, VDN, IQN)

● Offline
○ Advantage Re-Weighted Imitation Learning 

(MARWIL)

Broad Range of Scalable Algorithms

● High-throughput architectures
○ Distributed Prioritized Experience Replay (Ape-X)
○ Importance Weighted Actor-Learner Architecture (IMPALA)
○ Asynchronous Proximal Policy Optimization (APPO)

● Gradient-based
○ Soft Actor-Critic (SAC)
○ Advantage Actor-Critic (A2C, A3C)
○ Deep Deterministic Policy Gradients (DDPG, TD3)
○ Deep Q Networks (DQN, Rainbow, Parametric DQN)
○ Policy Gradients
○ Proximal Policy Optimization (PPO)

https://ray.readthedocs.io/en/latest/rllib-algorithms.html#augmented-random-search-ars
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#evolution-strategies
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#qmix-monotonic-value-factorisation-qmix-vdn-iqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#qmix-monotonic-value-factorisation-qmix-vdn-iqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-re-weighted-imitation-learning-marwil
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-re-weighted-imitation-learning-marwil
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#distributed-prioritized-experience-replay-ape-x
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#importance-weighted-actor-learner-architecture-impala
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#asynchronous-proximal-policy-optimization-appo
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#soft-actor-critic-sac
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-actor-critic-a2c-a3c
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#deep-deterministic-policy-gradients-ddpg-td3
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#policy-gradients
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#proximal-policy-optimization-ppo
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Diverse Compute Requirements Motivated Creation of Ray!

Decisions (actions)

Consequences
(observations, rewards)

environmentagent

Simulator (game 
engine, robot sim, 

factory floor sim…)

Neural network 
“stuff”

And repeated play, 
over and over again, 
to train for achieving 

the best reward

Complex agent?
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Hyperparam 
Tuning

Hyperparameter Tuning - Ray Tune

21

Training Model
ServingStreaming SimulationFeaturization

Serve
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Trivial example:
● What’s the best value for “k” in k-

means??
● k is a “hyperparameter”
● The resulting clusters are 

defined by “parameters”

What Is Hyperparameter Tuning?

Source: https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

https://commons.wikimedia.org/wiki/File:K-means_convergence.gif
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Nontrivial Example - Neural Networks

Every number 
shown is a 

hyperparameter!

How many layers? 
What kinds of layers?
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Hyperparameters Are Important for Performance
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Why We Need a Framework for Tuning Hyperparameters

Model training is time-
consuming

Resources are expensive

We want the best model
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tune.run(PytorchTrainable,
         config={
             "model_creator": PretrainBERT,
             "data_creator": create_data_loader,
             "use_gpu": True,
             "num_replicas": 8,
             "lr": tune.uniform(0.001, 0.1)
         }, 
         num_samples=100,
         search_alg=BayesianOptimization()

)

Tuning + Distributed Training



@deanwampler

Native Integration with TensorBoard HParams
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Resource Aware 
Scheduling

Seamless 
Distributed Execution

Simple API for 
new algorithms

Framework Agnostic

Tune is Built with Deep Learning as a Priority

ray.readthedocs.io/en/latest/tune.html

http://ray.readthedocs.io/en/latest/tune.html
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What about Ray
for Microservices?
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What Are Microservices?

● They partition the domain
● Conway's Law - Embraced
● Separate responsibilities
● Separate management

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3
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Conway’s Law - Embraced

● “Any organization that designs a 
system will produce a design whose 
structure is a copy of the 
organization's communication 
structure”

● Let each team own and manage the 
services for its part of the domain

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

en.wikipedia.org/wiki/Conway's_law

https://en.wikipedia.org/wiki/Conway's_law
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Separate Responsibilities

● Each microservice does “one 
thing”, a single responsibility 
with minimal coupling to the 
other microservices

● (Like, hopefully, the teams are 
organized, too…)

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

wikipedia.org/wiki/Single-responsibility_principle

https://en.wikipedia.org/wiki/Single-responsibility_principle
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Separate Management

● Each team manages its own 
instances

● Each microservice has a 
different number of instances 
for scalability and resiliency

● But they have to be managed 
explicitly

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2µ-service 1
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Ray Cluster

task/
actortask/

actor
task/
actor

task/
actortask/

actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor
task/
actor

task/
actor

Management - Simplified

● With Ray, you have one 
“logical” instance to manage 
and Ray does the cluster-
wide scaling for you.

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3
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What about Kubernetes (and others…)?

● Ray scaling is very fine grained. 
● It operates within the “nodes” of 

coarse-grained managers
● Containers, VMs, or physical 

machines

Ray Cluster

task/
actortask/

actor
task/
actor

task/
actortask/

actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor
task/
actor

task/
actor

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

Node Node

Node
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Conclusion

● Ray is the new state-of-the-art for distributed computing
● The shortest path from your laptop to the cloud
● Run complex distributed tasks on large clusters from 

simple code on your laptop

Serve
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About Anyscale, Inc

● Spun out of U.C. Berkeley
● Making Ray the standard for distributed computing
● We are hiring!
● https://anyscale.com

https://anyscale.com


© 2019-2020, anyscale.com

Questions?

ray.io
anyscale.com - We’re Hiring!
anyscale.com/events
raysummit.org
dean@anyscale.com

http://anyscale.com
https://ray.io
https://anyscale.com
https://anyscale.com/events
http://raysummit.org
mailto:dean@anyscale.com?subject=Follow%20up%20from%20your%20Ray%20talk
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Extra Slides
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Hyperparam 
Tuning

Returning to RLlib…

40

Training Model
ServingStreaming SimulationFeaturization

Serve



@deanwampler

Many Practical RL Loop Decompositions

Async DQN (Mnigh et al, 2016)

Actor-
Learner

Actor-
Learner

Actor-
Learner

Param
Server

X <- rollout()
dθ <- grad(L, 
X)
sync(dθ)

Ape-X DQN (Horgan et al, 2018)

Learner

Replay

Actor

Actor

Actor

θ <- 
sync()
rollout()

X <- replay()
apply(grad(L, X))
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Many Practical RL Loop Decompositions

Async DQN (Mnigh et al, 2016) Ape-X DQN (Horgan et al, 2018)

Actor-
Learner

Actor-
Learner

Actor-
Learner

Param
Server Learner

Replay

Actor

Actor

Actor

Policy πθ(ot)
Trajectory 
postprocessor ρθ(X)
Loss L(θ,X)
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Many Practical RL Loop Decompositions

Async DQN (Mnigh et al, 2016) Ape-X DQN (Horgan et al, 2018)

Actor-
Learner

Actor-
Learner

Actor-
Learner

Param
Server Learner

Replay

Actor

Actor

Actor

Policy πθ(ot)
Trajectory 
postprocessor ρθ(X)
Loss L(θ,X)
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Many Practical RL Loop Decompositions

A big motivation for Ray:
No existing system effectively met all 
the varied demands of RL workloads.
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We Need Abstractions for RL

Good abstractions decompose RL algorithms into 
reusable components.

Goals:
● Code reuse across deep learning frameworks
● Scalable execution of algorithms
● Easily implement, compare, and reproduce 

algorithms
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Policy Serving

RLlib Policy 
Server

Multi-Agent

Actor Network

ActionState

Environment

Actor Network

ActionState

Training in Simulation

General Purpose APIs: Even More Requirements
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Unified Framework for Scalable RL

Distributed PPO

Evolution
Strategies

Ape-X Distributed 
DQN, DDPG


