m Microsoft

b 4
The Ops in Serverless 00.90

OEVELOPER
ADVOCATE

Jennifer Davis
Senior Cloud Advocate, Microsoft -

Defining Serverless (FaaS)

- No server provisioning
- Scales automatically

* No idling costs

- Increased availability

Compute Lifecycle

Dispose

Serverless Lifecycle

)
®

Benefits of Serverless
Additional Choice

Reduction of cost

@[S
H#serverlessops

L

s

e

I 1 '
Governance

R 0 Nd "Br0 Mem

......

APl Management policies

11/19/2017 « 4 minutes to read - @ G @ & & +2

This section provides a reference for the following APl Management policies. For information on adding and configuring policies, see
Policies in AP| Management.

Policies are a powerful capability of the system that allow the publisher to change the behavior of the API through configuration.
Policies are a collection of Statements that are executed sequentially on the request or response of an API. Popular Statements
include format conversion from XML to JSON and call rate limiting to restrict the amount of incoming calls from a developer. Many
more policies are available out of the box.

Policy expressions can be used as attribute values or text values in any of the APl Management policies, unless the policy specifies
otherwise. Some policies such as the Control flow and Set variable policies are based on policy expressions. For more information, see
Advanced policies and Policy expressions.

Policies

® Access restriction policies
© Check HTTP header - Enforces existence and/or value of a HTTP Header.
O Limit call rate by subscription - Prevents APl usage spikes by limiting call rate, on a per subscription basis.
O Limit call rate by key - Prevents APl usage spikes by limiting call rate, on a per key basis.
O Restrict caller IPs - Filters (allows/denies) calls from specific IP addresses and/or address ranges.
O Set usage quota by subscription - Allows you to enforce a renewable or lifetime call volume and/or bandwidth quota, on a
per subscription basis.
O Set usage quota by key - Allows you to enforce a renewable or lifetime call volume and/or bandwidth quota, on a per key
basis.
© Validate JWT - Enforces existence and validity of a JWT extracted from either a specified HTTP Header or a specified query
parameter.
® Advanced policies
Control flow - Conditionally applies policy statements based on the evaluation of Boolean expressions.
Forward request - Forwards the request to the backend service.
Limit concurrency - Prevents enclosed policies from executing by more than the specified number of requests at a time.
Log to Event Hub - Sends messages in the specified format to a message target defined by a Logger entity.

Mock response - Aborts pipeline execution and returns a mocked response directly to the caller.

O 0 0 O O ©

Retry - Retries execution of the enclosed policy statements, if and until the condition is met. Execution will repeat at the
specified time intervals and up to the specified retry count.

Return response - Aborts pipeline execution and returns the specified response directly to the caller.

Send one way request - Sends a request to the specified URL without waiting for a response.

Send request - Sends a request to the specified URL.

O 0 O O

Set HTTP proxy - Allows you to route forwarded requests via an HTTP proxy.

bit.ly/AzureAPIPolicies
@sigje
#serverlessops

Dependencies

@sigje
#serverlessops

L

Function Rot

@[S
H#serverlessops

L

O| O

©|0|

O| O

Hd

©]|0©

Capacity Planning

L

@sigje
#serverlessops

Service Resilience

@sigje
#serverlessops

L

Monitoring SLI/SLOs

System Metrics ‘ systemc.imer morn
* CPU a graph that tells a story:

° Memory CPU usage of a tool that normally uses
almost none

e Disk Utilization

deployed a loop w/ no exit condition

10:10 AM - 18 Oct 2018

@sigje
#serverlessops

AWS Stepfunctions Metrics

Visual workflow

 Duration

* |[nvocations
* Errors

* Throttles

M Success M Failed Cancelled In Progress

Debugging

AL

e m———

y @sigje

#serverlessops

-
p -,
e

R o

Feature Flags/Toggles

@[S
H#serverlessops

L

Testing

@sigje
#serverlessops

L

Documentation

y @sigje

#serverlessops

Processes

@sigje
#serverlessops

L

Code

@sigje
#serverlessops

L

. », Bryan Friedman
:) @bryanfriedman

2001:
2007:
2012:
207
201

207
207
207
2019:
2020:

2:31 PM -9 Jul 2019

Source:

| need a VM
| need a lot of VMs

: Just give me PaaS

: Whoa containers!

: | need a lot of containers
: Whoa Kubernetes!

: | need a lot of Kubernetes
: So, bare metal?

Wait, no, | actually need serverless
Yeah...l need all the things

https://twitter.com/bryanfriedman/status/1148721255857573888

@sigje
#serverlessops

What next?

- Join Slack conversations

- serverless-forum.slack.com #serverlessops
- Blogging?

- Add operability/visibility/observability
- Email me!

- serverless@awesomedevops.org

@sigje
#serverlessops

