
1

Beyond Microservices:
Streams, State and Scalability

Gwen Shapira, Engineering Manager
@gwenshap

22

In the beginning…

3

We Have Microservices

3

4

We Microservices

4

5

They need to communicate

5

6

6

I know! I’ll use REST APIs
Orders

Returns?

Inventory Fulfill
Order

Validate
Order

7

Synchronous request-response communication
Leads to

Tight point-to-point coupling

7

8Clients know too much

Orders

Inventory

Returns

Validate

Fulfill

9

9

shifts in responsibility, redundancy

Fail

Retry?

Retry?

Retry?

10

1
0

Making Changes is Risky

Change

11

1
1

Adding Services Requires Explicit Calls
Mistake
Handler

12

1
2

REST = HTTP + JSON = SLOW

1313

We can do better.

14

Nice to meet you!

● Moving data around for 20 years

● Engineering Manager at Confluent

● Apache Kafka Committer

● Wrote a book or two

● Tweets a lot - @gwenshap

1515

API Gateway

16Clients know too much

Orders

Inventory

Returns

Validate

Fulfill

17Shift in responsibility, redundancy

Auth

Auth

Auth

18API Gateway

Returns

Inventory

Orders

API
Gateway

1919

API Gateway
Responsibilit
y

● Authentication ● Routing

● Rate Limiting ● Logging and
analytics

20

Anti-pattern

2121

Service Mesh

22

North-South Traffic

23

East-West Traffic

24Side-car

26

Proxy as sidecar:
Proxy

Proxy

Proxy

Proxy

Proxy

27

Proxy

I have a new IP
now. YOLO!

Who
cares?

I magically
know all about
it!

28

Proxy

I can recover from
errors without
drowning

Error?
No worries!
Lets retry every
millisecond forever

LOL. I’m
dropping 99%
of the retries.

2929

Event Driven

30

3
0

Making Changes is Risky

Change

31

3
1

Adding Services Requires Explicit Calls

Mistake
Handler

32

Logic

Logic

Logic

Logic

1. Tell others what to do
(commands)

2. Ask questions (queries)
Logic

Logic

Logic

Logic

Broadcast what I do

Kafka

Others work out
what to do Queries use

local cache

33

Events are both facts and triggers

34

Buying an iPad
(with REST)
- Orders Service calls Shipping

Service to tell it to ship item.

- Shipping service looks up

address to ship to (from

Customer Service)

Submit
Order

shipOrder() getCustomer()

Orders
Service

Shipping
Service

Customer
Service

Webserver

35

Using events for
Notification
- Orders Service no longer knows

about the Shipping service (or

any other service). Events are

fire and forget.

Submit
Order

Order
Created

getCustomer()
REST

Notification

Orders
Service

Shipping
Service

Customer
Service

Webserver

36

Using events to
share facts
- Call to Customer service is gone.

- Instead data in replicated, as

events, into the shipping service,

where it is queried locally. . Customer
Updated

Submit
Order

Order
Created

Data is
replicated

Orders
Service

Shipping
Service

Customer
Service

Webserver

3737

DB for Each
Microservice?

● It is safe:
They are all
derived from same
stream of events

● Custom
projection just the
data each service
needs.

● Reduced
dependencies

● Low latency

38

Event Driven Microservices are

Stateful

39

4040

Schema

41

Logic

Logic

Logic

Logic

1. Tell others what to do
(commands)

2. Ask questions (queries)
Logic

Logic

Logic

Logic

Broadcast what I do

Kafka

Others work out
what to do Queries use

local cache

42

The medium is not the message.

4343

This is a message
{

sessionId: 676fc8983gu563,

timestamp: 1413215458,

viewType: "propertyView",

propertyId: 7879,

loyaltyId: 6764532

origin: "promotion",

...... lots of metadata....

}

44

4
4

REST = HTTP + JSON = SLOW

45

4
5

Making Changes is Risky

Change

46

There are lots of dependencies

Booking
service

{user_id: 53, timestamp: 1497842472}

create table (
use_id number,
timestamp number)

new Date(timestamp)

Attribution
service

47

Booking
service

{user_id: 53, timestamp: “June 28, 2017 4:00pm”}

create table (
use_id number,
timestamp number)

new Date(timestamp)

Attribution
service

48

Moving fast and breaking things

Booking
service

{user_id: 53, timestamp: “June 28, 2017 4:00pm”}

create table (
use_id number,
timestamp number)

new Date(timestamp)

Attribution
service

49

APIs between services are Contracts
In Event Driven World – Event Schemas ARE the API

50

51

So the flow is…

Dev Nightly build /
merge Prod

Test Registry Prod Registry

Test

MVN Plugin

5252

Serverless

53

Function as a Service

Event < / >

Response
VM Function

Instance

< / >

Launch

54

When nothing happens

Event < / >

Response
VM Function

Instance

< / >

Launch

55

At scale

Event < / >

Response
VM Function

Instance

< / >

Launch

VM Function
Instance

< / >

VM Function
Instance

< / >

VM Function
Instance

< / >

56

Consume Event

Produce

Container
Function
Instance

< / >

Wait, this is super familiar
Kafka Partitions

Container
Order
Service!

< / >

5757

Up Next:
Stateful Serverless

58

State is required

● Dynamic Rules

● Event enrichment

● Joining multiple events

● Aggregation

59

How You Probably Do State
Create Order < / >

Order Created
VM Function

Instance

< / >

Launch

Cloud Data
Storeselect from

inventory
…
insert into
Orders…

60

We can do a bit better

Select order_id,
customer_name, product,
quantity, price, state from
orders
where state != “CLOSED”

< / >

VM
Function

Instance

< / >
Cloud Data

Store

What’s the latest

with my order?

Maybe check DB?

Order is processing

Not shipped yet.

61But I really want this back:

62

VM

Create Order
< / >

Order Status
< / >

Validate Order

< / >

Inventory,
Rules

Stateful Serverless

64

● Durable functions
everywhere

● Triggers and data
from data stores to
functions

What’s Still missing?

● Unified view of
current state

65

66

Resources
● http://christophermeiklejohn.com/serverless/2019/05/25/stateful-serverless-bank-example.html

● https://www.infoq.com/articles/service-mesh-promise-peril/

● https://blog.getambassador.io/api-gateway-vs-service-mesh-104c01fa4784

● https://www.nginx.com/blog/building-microservices-using-an-api-gateway/

● https://wecode.wepay.com/posts/migrating-apis-from-rest-to-grpc-at-wepay

● https://content.pivotal.io/slides/microservices-events-and-breaking-the-data-monolith-with-kafka

● https://www.slideshare.net/ConfluentInc/event-sourcing-stream-processing-and-serverless-ben-
stopford-confluent-kafka-summit-sf-2019

http://christophermeiklejohn.com/serverless/2019/05/25/stateful-serverless-bank-example.html
https://www.infoq.com/articles/service-mesh-promise-peril/
https://blog.getambassador.io/api-gateway-vs-service-mesh-104c01fa4784
https://www.nginx.com/blog/building-microservices-using-an-api-gateway/
https://wecode.wepay.com/posts/migrating-apis-from-rest-to-grpc-at-wepay
https://content.pivotal.io/slides/microservices-events-and-breaking-the-data-monolith-with-kafka
https://www.slideshare.net/ConfluentInc/event-sourcing-stream-processing-and-serverless-ben-stopford-confluent-kafka-summit-sf-2019

