
How to Hack OAuth
AARON PARECKI
@aaronpk
aaronpk.com

@aaronpk

Senior Security Architect 
at Okta

@oktadev

@aaronpk

oauth.net

RFC6749

RFC6750
CL

IEN
T T

YP
E

AUTH METHOD

GRANT TYPE

RFC6819

RFC7009RFC7592

RF
C7

66
2

RF
C7

63
6

RFC7591

RFC7519

BUILDING YOUR APPLICATION

RFC8252

OID
C

RFC8414

ST
AT

E P
AR

AM TLS

CSRF

UMA 2

FAPI

RFC7515RFC7516

RFC7517RF
C7

51
8TOKEN BINDING

POP

SECURITY BCP

CIB
A

HT
TP

 SI
GN

ING

MUTUAL TLS SPA BCP

JA
RM

JAR

TOKEN EXCHANGE

DP
OP

@aaronpk

THE PASSWORD ANTI-PATTERN

@aaronpk

THE PASSWORD ANTI-PATTERN

facebook.com ~2010

@aaronpk

@aaronpk

so...
how can I let an app
access my data
without giving it my password?

@aaronpk

POST /resource/1/update HTTP/1.1
Authorization: Bearer RsT5OjbzRn430zqMLgV3Ia
Host: api.authorization-server.com

description=Hello+World

@aaronpk

A HOTEL KEY CARD, FOR APPS

Authorization Server Access Token Resource (API)

@aaronpk

HOW OAUTH WORKS

@aaronpk

ROLES IN OAUTH

OAuth Server
(Authorization Server)
aka the token factory

API
(Resource Server)

The Application
(Client)

The User
(Resource Owner)

Device
(User Agent)

User: I’d like to use this great app

App: Please go to the authorization server to grant me access

User: I’d like to log in to “Yelp”, it wants to access my contacts

AS: Here is a temporary code the app can use

App: Here is the temporary code, and my secret, please give me a token

User: Here is the temporary code, please use this to get a token

AS: Here is an access token!

App: Please let me access this user’s data with this access token!

User Agent
App OAuth Server

API

?

Front ChannelBack Channel

https://accounts.google.com/?...

Passing data via the browser's address bar

The user, or malicious software,
can modify the requests and responses

Sent from client to server

HTTPS request from client to server,
so requests cannot be tampered with

Back Channel Benefits ‣ The application knows it's
talking to the right server

‣ Connection from app to server
can't be tampered with

‣ Response from the server can
be trusted because it came
back in the same connection

OAuth Server OAuth Client

Passing Data via the Back Channel

OAuth Server OAuth Client

Passing Data via the Front Channel
Did they catch  

it? Did someone else  

steal it?
Is this really  

from the real  

OAuth server?

Front Channel Benefits

https://accounts.google.com/?...

‣ The user being involved
enables them to give consent

‣ Enables easier two-factor
authorization integration

‣ Doesn't require the receiver to
have a publicly routable IP 
(e.g. can work on a phone)

@aaronpk

THE HACKS

@aaronpk

HOW TO HACK OAUTH
RFC 6749 Section 10
RFC 8252 Section 8
RFC 6819
draft-ietf-oauth-security-topics

https://tools.ietf.org/html/rfc6749#section-10
https://tools.ietf.org/html/rfc8252#section-8
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/draft-ietf-oauth-security-topics

@aaronpk

TWITTER
STOLEN API KEYS

@aaronpk2013

@aaronpk

@aaronpk

ANYONE CAN  
IMPERSONATE  
THE TWITTER APPS

@aaronpk

DON'T PUT SECRETS 
IN NATIVE APPS!
https://developer.okta.com/blog/2019/01/22/oauth-api-keys-arent-safe-in-mobile-apps

@aaronpk

PKCE
PROOF-KEY FOR CODE EXCHANGE
RFC 7636

(pronounced "pixie")

User: I’d like to use this great app

App: Please go to the authorization server to grant me access, take this hash with you

User: I’d like to log in to this app, here's the hash

AS: Here is a temporary code the app can use

App: Here's the code, and the plaintext secret, please give me a token

User: Here is the temporary code, please use this to get a token

AS: Let me verify the hash of that secret... ok here is an access token!

App: Please let me access this user’s data with this access token!

App: Hang on while I generate a new secret and hash it

User 
Agent

App OAuth Server

API

?

@aaronpk

AppAuth.io

iOS / Android / JavaScript

@aaronpk

JWT
ALG=NONE

photo by flickr.com/quidox

@aaronpk2015

@aaronpk

JWTS ARE OFTEN USED 
FOR API AUTHENTICATION 
AND AS OAUTH ACCESS TOKENS

An Example JWT

eyJraWQiOiJvQ1JjR3RxVDhRV2tJR0MyVXpmcEZUczVqSkdnM00zSTNOMHgtZDJhSFNNIiwiYW
xnIjoiUlMyNTYifQ.eyJ2ZXIiOjEsImp0aSI6IkFULkp3eVRTcTlqNDU0bDNTNmRTM1VTV1hMV
VpwekdKdWNSd1ZEbFZCNWNIc3cuVVM1V1NGYVFiQllUMC9GM2tjMG8vK1ZUY3VZZzdwVnZqZXZ
TT3hkUHhCMD0iLCJpc3MiOiJodHRwczovL2Rldi0zOTYzNDMub2t0YXByZXZpZXcuY29tL29hd
XRoMi9kZWZhdWx0IiwiYXVkIjoiYXBpOi8vZGVmYXVsdCIsImlhdCI6MTU0MzgwMzAyNSwiZXh
wIjoxNTQzODA2NjI1LCJjaWQiOiIwb2FoenBwM3RjcEZyZmNXSTBoNyIsInVpZCI6IjAwdWkwZ
mpraWV5TDQ2bWEwMGg3Iiwic2NwIjpbIm9mZmxpbmVfYWNjZXNzIiwicGhvdG8iXSwic3ViIjo
iaW5xdWlzaXRpdmUtYWxiYXRyb3NzQGV4YW1wbGUuY29tIn0.ncVkzcc6qrFJSXE3-5UsRu_kH
vbwIMKYL3PFaMwReYTquPAcOQ8t93xF0bxbS8wrP0udCDvk6eYq4VbjoFdD59Yy6ltz0OKQl3-
g8uFg2RwqTBMOKR0mYtQH0RCr9ORhSsmKolaDDt4TcRX78ZOAyhZ_Qg_UcEoHM4uZikpzBJYpY
KbCCfbx-6FzYyHuvevSFzURISYpSHv3nbzirkEzKbOv7eZlg1cCYBdUoGuVBskyHxfMxFpoKQU
3mwIFdlQJR8LZ8hA_5ZdYjjMeSXfjnhlP2rppJiHy1NreGXXcUsUA74V2t_keY44deTrnPgoFO
Se9IchWqcj6sDMDutC4ag

ID Token: JWT

eyJraWQiOiJiRmxZbmkzLXRhMXFSa0lFellHc2tLeFFRVUJvczZnOU9RQnRmNm9xcUxJIiwiYWxnI
joiUlMyNTYifQ
.
eyJzdWIiOiIwMHVjcTNid2o0V25JcTNnejBoNyIsIm5hbWUiOiJQYWRtYS0yIEdvdmluZGFyYWphb
HUiLCJsb2NhbGUiOiJlbi1VUyIsInZlciI6MSwiaXNzIjoiaHR0cHM6Ly9wYWRtYWdvdmluZGFyYW
phbHUub2t0YXByZXZpZXcuY29tL29hdXRoMi9kZWZhdWx0IiwiYXVkIjoiMG9hZDlydTd0endmNUF
qcGIwaDcgIiwiaWF0IjoxNTI0NTk0OTEwLCJleHAiOjE1MjQ1OTg1MTAsImp0aSI6IklELklfNUc4
RzhWdXowMHJvYl9aSzlja3J0T0pseVdwNzhxMU5naGV2QlJ6dkEiLCJhbXIiOlsicHdkIl0sImlkc
CI6IjAwb2NxM2J3aTFoTnpRT3B5MGg3Iiwibm9uY2UiOiJhYmMiLCJwcmVmZXJyZWRfdXNlcm5hbW
UiOiJwYWRtYS5nb3ZpbmRhcmFqYWx1QG9rdGEuY29tIiwiZ2l2ZW5fbmFtZSI6IlBhZG1hIiwibWl
kZGxlX25hbWUiOiJLcmlzaG5hIiwiZmFtaWx5X25hbWUiOiJHb3ZpbmRhcmFqYWx1Iiwiem9uZWlu
Zm8iOiJBbWVyaWNhL0xvc19BbmdlbGVzIiwidXBkYXRlZF9hdCI6MTUyNDU5NDM2MSwiYXV0aF90a
W1lIjoxNTI0NTk0OTA3fQ
.
HvMYW8XbdCf1BW-
ZfHQ1odaAYJjZqKkh1NUkHW0clk6J7pYunn8jllbIp0IhSjcCn6PBIlZPrrE0dkuyjvdHjVI8ALQN
wtM7FnIs9H6gCH0oONx4EL4K-Ef4d_w46qeqsCwMClvNoaE3c2I5-kON-
uJUlaefbnr6Al_y9z5mvLyDynf9IjrOyTPoIrgk9V46l28Aulp4dJhqBtZfpYyVbKrXawHSO5FvKT
DMPBhQgxt0_6PKG7sSkhbMeBicIc35SJJaXt81KSfkYDUp5s1UQ74ATHrtLe7HMU1yp_KajgYUKxM
XO5NiXpeNEHzarAOWzLHblrQcgkpuJbY3KM1HHg

header

payload

signature

Attacking a JWT

{
 "typ": "JWT",
 "alg": "RS256"
}

{
 "ver": 1,
 "jti": "AT.JwyTSq9j454l3S6dS3USWXLUZpzGJucRwVDlVB5cHsw.US5WSFaQbBYT0/F3kc0o/+VTcuYg7pVvjevSOxdPxB0=",
 "iss": "https://dev-396343.oktapreview.com/oauth2/default",
 "aud": "api://default",
 "iat": 1543803025,
 "exp": 1543806625,
 "cid": "0oahzpp3tcpFrfcWI0h7",
 "uid": "00ui0fjkieyL46ma00h7",
 "scp": [
 "offline_access",
 "photo"
],
 "sub": "inquisitive-albatross@example.com"
}

header

claims

signature

Attacking a JWT

{
 "typ": "JWT",
 "alg": "none"
}

{
 "ver": 1,
 "jti": "AT.JwyTSq9j454l3S6dS3USWXLUZpzGJucRwVDlVB5cHsw.US5WSFaQbBYT0/F3kc0o/+VTcuYg7pVvjevSOxdPxB0=",
 "iss": "https://dev-396343.oktapreview.com/oauth2/default",
 "aud": "api://default",
 "iat": 1543803025,
 "exp": 1543806625,
 "cid": "0oahzpp3tcpFrfcWI0h7",
 "uid": "00ui0fjkieyL46ma00h7",
 "scp": [
 "offline_access",
 "photo"
],
 "sub": "inquisitive-albatross@example.com"
}

header

claims

@aaronpk

Treat the JWT header as  
untrusted external information

@aaronpk

Never let the JWT header 
determine your verification mechanism

@aaronpk

Thankfully most JWT libraries 
fixed this in 2015-2016

@aaronpk

GOOGLE
OAUTH PHISHING

@aaronpk2017

https://accounts.google.com/oauth/authorize?response_ty

https://arstechnica.com/information-technology/2017/05/dont-trust-oauth-why-the-google-docs-worm-was-so-convincing/

https://accounts.google.com/oauth/authorize?response_ty

@aaronpk

FACEBOOK
STOLEN ACCESS TOKENS

improperly issued

@aaronpk

2018

@aaronpk

"The vulnerability was the result of  
the interaction of three distinct bugs"

https://newsroom.fb.com/news/2018/09/security-update/
- Guy Rosen, VP of Product Management, Facebook

@aaronpk

@aaronpk

@aaronpkhttps://newsroom.fb.com/news/2018/09/security-update/

The vulnerability was the result of the interaction of three distinct bugs:

@aaronpkhttps://newsroom.fb.com/news/2018/09/security-update/

The vulnerability was the result of the interaction of three distinct bugs:

@aaronpkhttps://newsroom.fb.com/news/2018/09/security-update/

The vulnerability was the result of the interaction of three distinct bugs:

@aaronpkhttps://newsroom.fb.com/news/2018/09/security-update/

The vulnerability was the result of the interaction of three distinct bugs:

@aaronpkhttps://newsroom.fb.com/news/2018/09/security-update/

The vulnerability was the result of the interaction of three distinct bugs:

@aaronpkhttps://newsroom.fb.com/news/2018/09/security-update/

The vulnerability was the result of the interaction of three distinct bugs:

@aaronpkhttps://newsroom.fb.com/news/2018/09/security-update/

The vulnerability was the result of the interaction of three distinct bugs:

@aaronpkhttps://newsroom.fb.com/news/2018/09/security-update/

The vulnerability was the result of the interaction of three distinct bugs:

@aaronpkhttps://newsroom.fb.com/news/2018/09/security-update/

The vulnerability was the result of the interaction of three distinct bugs:??!

@aaronpk

By using the "View As" feature to see what your profile looks like to someone else,

you would end up with an access token belonging to that user,

which had the permissions of the Facebook mobile app.

@aaronpk

Keep clean security boundaries

even for internal applications

@aaronpk

Don't let applications pretend 
to be other applications or other users

Thank You!

@aaronpk

aaronpk.com

oauth.wtf

