
Svelte - 
Web App Development

Reimagined

R. Mark Volkmann

Object Computing, Inc.

http://objectcomputing.com

Email: mark@objectcomputing.com

Twitter: @mark_volkmann

GitHub: mvolkmann

slides at https://github.com/mvolkmann/talks

Svelte

What Is Svelte?

Alternative to web frameworks like React, Vue, and Angular

A web application compiler, not a runtime library

compiles .svelte files to a single JavaScript file

no Svelte runtime dependencies, only devDependencies

Doesn’t use a virtual DOM

Developed by Rich Harris

formerly at “The Guardian”; currently at “The New York Times”

previously created Ractive web framework - https://ractive.js.org/

used at “The Guardian”

inspired parts of Vue

created Rollup module bundler - https://rollupjs.org/

alternative to Webpack and Parcel

2

Svelte

What is SvelteKit?

Framework on top of Svelte that replaces Sapper

Like Next for React or Nuxt for Vue

Features

3

file-based page routing

file-based endpoints (REST services)

layouts

ex. common page header, footer, and nav

error page

code splitting for JS and CSS

page visits only load the JS and CSS they need

hot module reloading (HMR)

provided by Vite; very fast!

static pages and sites

setup of TypeScript

setup of Sass or Less CSS preprocessors

setup of ESLint

setup of Prettier

adapters for deployment targets

currently node, static, begin, netlify, and vercel

to change, modify svelte.config.cjs

Important files and directories:

src/app.html - starting HTML file

src/routes - holds page components and endpoints

src/lib - holds other components and functions

build - holds files generated by npm run build

Config files:

.eslintrc.cjs

.prettierignore

.prettierrc

jsconfig.json

package.json

svelte.config.cjs

Svelte

Creating a SvelteKit Project

Install Node.js

npm init svelte@next [project-name]

omit project-name to create in current directory

asks these questions

 Use TypeScript in components? defaults to no

What do you want to use for writing Styles in Svelte components? CSS (default), Less, or SCSS

Add ESLint for code listing? defaults to no

Add Prettier for code formatting? defaults to no

outputs instructions for next steps

cd project-name

npm install

4

sets useTabs to true and printWidth to 100

{

 "arrowParens": "avoid",

 "bracketSpacing": false,

 "printWidth": 80,

 "singleQuote": true,

 "trailingComma": "none",

 "useTabs": false

}

my preferred settings.prettierrc

 env: {

 browser: true,

 es6: true,

 node: true

 },

additions .eslintrc.cjs

for console

for Promise

for document,
localStorage,
and window

build/** add this

.prettierignore

build/

create this file.eslintignore

Svelte

Running a SvelteKit Project

npm run dev to run in development mode

provides watch and live reload

options go after --

to open in default browser add --open or -o

to specify port add --port # or -p # (defaults to 3000)

npm build to build for deployment

creates files in build directory that should be deployed

npm run lint to run ESLint

npm run format to run Prettier

5

Svelte

An Example

Since you are all experienced web developers, 
let’s look at an example app 
so you can compare the look of the code 
to your current favorite web framework

On to the classic ... todo app!

Code at

https://github.com/mvolkmann/sveltekit-todo

https://github.com/mvolkmann/sveltekit-todo-w-endpoints

6

Svelte

Todo App ...

7

a Todo component

Svelte

... Todo App ...

8

<script>

 import {createEventDispatcher} from 'svelte';

 import {fade} from 'svelte/transition';

 const dispatch = createEventDispatcher();

 export let todo; // the only prop

</script>

<li transition:fade>

 <input

 type="checkbox"

 checked={todo.done}

 on:change={() => dispatch('toggleDone')}

 />

 {todo.text}

 <button on:click={() => dispatch('delete')}>Delete</button>

<style>

 .done-true {

 color: gray;

 text-decoration: line-through;

 }

 li {

 margin-top: 5px;

 }

</style>

src/lib/Todo.svelte

What is the name of this component?

Can’t tell.

Names are assigned when other
components import this one.

interpolation

export makes it a prop

script and
style sections
are optional

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Svelte

... Todo App ...

9

<script>

 import Todo from '../lib/Todo.svelte';

 let lastId = 0;

 const createTodo = (text, done = false) => ({id: ++lastId, text, done});

 let todoText = '';

 let todos = [

 createTodo('learn Svelte', true),

 createTodo('build a Svelte app')

];

 $: uncompletedCount = todos.filter(t => !t.done).length;

 $: status = `${uncompletedCount} of ${todos.length} remaining`;

 function addTodo() {

 todos = todos.concat(createTodo(todoText));

 todoText = '';

 }

 const archiveCompleted = () => todos = todos.filter(t => !t.done);

 const deleteTodo = todoId => todos = todos.filter(t => t.id !== todoId);

 function toggleDone(todo) {

 const {id} = todo;

 todos = todos.map(t => t.id === id ? {...t, done: !t.done} : t);

 }

</script>

src/routes/index.svelte

Not really archiving in this
simple implementation,
just deleting.

Top-level variables ARE the 
component state if used in HTML!

When state changes, only the
relevant part of DOM are updated.

reactive
declarations

No methods,
just functions.

No this anywhere, 
just plain functions!

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27
28

29

Svelte

... Todo App

10

<div>

 <h2>To Do List</h2>

 <div>

 {status}

 <button on:click={archiveCompleted}>Archive Completed</button>

 </div>

 <form on:submit|preventDefault={addTodo}>

 <input

 type="text"

 size="30"

 autofocus

 placeholder="enter new todo here"

 bind:value={todoText}

 />

 <button disabled={!todoText}>Add</button>

 </form>

 {#each todos as todo}

 <Todo

 {todo}

 on:delete={() => deleteTodo(todo.id)}

 on:toggleDone={() => toggleDone(todo)}

 />

 {/each}

</div>

binds value of form element to a variable; 
simulates two-way data binding; 
provides current value and 
event handling for updating variable 
when user changes value

Mustache-style markup

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

src/routes/index.svelte

Svelte

... Todo App ...

11

<style>

 button {

 margin-left: 10px;

 }

 h2 {

 margin-top: 0;

 }

 /* This removes bullets from a bulleted list. */

 ul {

 list-style: none;

 margin-left: 0;

 padding-left: 0;

 }

</style>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

src/routes/index.svelte

Svelte

Logic in Markup

Three approaches for conditional and iteration logic

React

uses JSX where logic is implemented 
with JavaScript code in curly braces

Angular and Vue

support framework-specific attributes for logic

ex. ngIf, ngFor, v-if, v-for, ...

Svelte

supports mustache-like custom syntax 
that wraps elements

ex. {#if} and {#each}

can wrap multiple elements without 
introducing a new, common parent

12

Why does it make sense to specify
conditional and iteration logic 
INSIDE elements using attributes?

 
Imagine if you could do that 
with JavaScript functions.

doSomething(

 arg1,

 arg2,

 if (arg1 > 10),

 for (arg1 in someCollection));

Isn’t that weird?

Svelte

Top Svelte Features

It’s fast!

see https://krausest.github.io/js-framework-benchmark/current.html

can select frameworks to compare

Small bundle sizes

File-based component definitions

CSS scoped by default

Clear place to put global CSS

Easy component state management (reactivity)

Reactive statements ($:)

Two-way data bindings

Built-in animations

Easy app state management (stores)

13

We haven’t seen this yet.

Svelte

Small Bundle Sizes

Delivered code is much smaller, 
so loads faster in browsers

Create production build with npm run build

A RealWorld Comparison of Front-End Frameworks with Benchmarks

https://medium.com/dailyjs/a-realworld-comparison-of-front-end-frameworks-2020-4e50655fe4c1

14

Angular+ngrx: 694 
React+Redux: 193 
Vue: 71 
Svelte: 15

Angular+ngrx: 4210 
React+Redux: 2050 
Vue: 2076 
Svelte: 1057

Gzipped App Size in KBs Lines of Code

Svelte

File-based Component Defs

Angular uses classes

React uses functions or classes

Vue uses object literals

Svelte doesn’t use any JavaScript container

JavaScript, CSS, and HTML in source files 
are combined to form the component definition 
which automatically becomes the default export

name is associated when imported and must start uppercase

lowercase names are reserved

for predefined elements like those in HTML and SVG

15

Svelte

CSS

Scoped by default

CSS specified in a component style element 
is automatically scoped to the component

achieved by adding the same generated CSS class name, svelte-hash, 
to each rendered element of the component affected by these CSS rules

Clear place for global CSS

in Svelte see public/global.css; linked by public/index.html

in SvelteKit see src/app.css; imported by src/routes/$layout.svelte

16

Svelte

Easy Component State Mgmt.

(“reactivity”)

Changes to top-level variables referenced in interpolations 
automatically cause those interpolations to be reevaluated

Example

Must assign a new value to trigger

pushing new elements onto an array doesn’t do this

17

<script>

 let count = 0;

 const increment = () => count++;

</script>

<div>count = {count}</div>

<button on:click={increment}>+</button>

// Alternative trick

myArr.push(newValue);

myArr = myArr;

myArr = myArr.concat(newValue); works

works

myArr = [...myArr, newValue]; works

Svelte

Reactive Statements

$: is a “labeled statement” with label name “$” 
that Svelte treats as a “reactive statement”

Add as a prefix on top-level statements that should be 
repeated whenever any referenced variables change

Examples

Can apply to a block

Can apply to multiline statements like if statements

18

$: average = total / count;

$: console.log('count =', count);

great for debugging

$: {

 // statements to repeat go here

}

$: if (someCondition) {

 // body statements

}

re-evaluates condition if 
any variables it references change, 
and executes body only when true

like “computed properties” in Vue When applied to an assignment 
to an undeclared variable it is
called a “reactive declaration” 
and the let keyword 
is not allowed.

Labeled statements can be used as targets 
of break and continue statements.

It is not an error in JavaScript to use same
label more than once in same scope.

a.k.a. “destiny operator”

Svelte

<script>

 let interestRate = 3;

 let loanAmount = 200000;

 let years = 30;

 const MONTHS_PER_YEAR = 12;

 $: months = years * MONTHS_PER_YEAR;

 $: monthlyInterestRate = interestRate / 100 / MONTHS_PER_YEAR;

 $: numerator = loanAmount * monthlyInterestRate;

 $: denominator = 1 - (1 + monthlyInterestRate) ** -months;

 $: payment =

 !loanAmount || !months ? 0 :

	 interestRate ? numerator / denominator :

	 loanAmount / months; // no interest

</script>

<label for="loan">Loan Amount</label>

<input id="loan" type="number" bind:value={loanAmount} />

<label for="interest">Interest Rate</label>

<input id="interest" type="number" bind:value={interestRate} />

<label for="years">Years</label>

<input id="years" type="number" bind:value={years} />

<div>

 Monthly Payment: ${payment.toFixed(2)}

</div>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

19

Loan Example

Svelte

Easy App State Mgmt.

“Stores” hold application state outside any component

Alternative to using props or “context” 
to make data available in components

Where to define?

for stores that should be available to any component, 
define and export them in a file like src/stores.js 
and import them from that file wherever needed

for stores that should only be available to descendants of a given component, 
define them in that component and 
pass them to descendants using props or context

20

Svelte

Kinds of Stores

Writable

only kind that can be modified by components

methods

set(newValue)

update(currentValue => newValue)

Readable

handle computing their data, perhaps from a REST call

components cannot modify

Derived

derive data from current values of other stores

Custom

must implement subscribe method

can provide custom methods to update state 
and not expose set and update methods

21

calculates new value from current value

Svelte

Defining Writable Stores

22

import {writable} from 'svelte/store';

export const dogStore = writable([]);

stores.js

initial value

export const fancyStore = writable(

 initialValue,

 async set => {

 // Called when subscriber count goes from 0 to 1.

 // Compute initial value and pass to set function.

 const res = await fetch('/some/url');

 const data = await res.json();

 set(data);

 return () => {

 // Place cleanup code here.

 // Called when subscriber count goes to 0.

 }

 }

);

using optional
second argument

add try/catch
for error handling

Svelte

Using Stores

Option #1 - subscribe method - very verbose

Option #2 - $ auto-subscription shorthand - much better

variables whose names begin with $ must be stores

automatically subscribes when first used 
and unsubscribes when removed from DOM

23

<script>

 import {onDestroy} from 'svelte';

 import {dogStore} from './stores.js';

 let dogs;

 const unsubscribe = dogStore.subscribe(value => dogs = value);

 onDestroy(unsubscribe);

</script>

<!-- Use dogs in HTML. -->

<script>

 import {dogStore} from './stores.js';

</script>

<!-- Use $dogStore in HTML. -->

uses auto-subscription

uses subscribe method

Svelte

Issues to Consider

Popularity

perhaps Svelte is now considered the 
#4 most popular approach for building web apps

isn’t yet easy to find developers that already know it

but it’s very easy to learn and 
there is less to learn than other approaches

Component libraries

fewer available than for other frameworks, 
but perhaps enough for your app

just a matter of time for more to arrive

Cannot generate HTML in functions

encourages creating additional .svelte files in cases 
where React would use functions that return JSX

24

Svelte

Related Tools
Svelte VS Code extension

SvelteKit - https://kit.svelte.dev

“a framework for building web applications of all sizes, 
with a beautiful development experience and flexible filesystem-based routing”

provides routing, server-side rendering, code splitting, and building static sites

uses Vite “Next Generation Frontend Tooling” which provides 
“instant server start”, “lightning fast HMR”, and “optimized builds”

Svelte Testing Library

https://testing-library.com/docs/svelte-testing-library/intro/

Storybook with Svelte

https://storybook.js.org/docs/svelte/get-started/introduction

https://mvolkmann.github.io/blog/topics/#/blog/svelte/storybook/

Svelte Native - https://svelte-native.technology/

for implementing native mobile apps

builds on top of NativeScript

community-driven project

25

Svelte

Topics Not Covered Here

Two-way data bindings

more options than shown here

Easy animations built-in

Inserting HTML

Slots

for passing child elements to a component

Event details

handling, modifiers, dispatching

Lifecycle functions

onMount, beforeUpdate, 
afterUpdate, and onDestroy

Actions

register a function to be called when 
a specific element is added to DOM

ex. moving focus

Routing

use SvelteKit file-based routing or page on npm

Module Context

to run JavaScript code in a 
component source file only once instead of 
once for each component instance created

Special Elements

<svelte:name ...>

Debugging with {@debug}

debugger breaks on state changes

Unit tests

with Jest and Svelte Testing Library

End-to-end tests

with Cypress

Compiling to custom elements

can be used with any framework

26

but covered in my book

Svelte

Svelte Resources

“Rethinking Reactivity” talk by Rich Harris

delivered multiple times, most recently at “Shift Conference” June 20, 2019

explains issues with using virtual DOM (like React and Vue) and motivation for Svelte

Home page - https://svelte.dev

contains Tutorial, API Docs, Examples, online REPL, Blog, and Sapper link

REPL is great for trying small amounts of Svelte code

REPL can save for sharing and submitting issues

SvelteKit - https://kit.svelte.dev

GitHub - https://github.com/sveltejs/svelte

Svelte Community - https://github.com/sveltejs/community

“contains data for Svelte meetups, packages, resources, recipes, and showcase websites”

Discord chat room - https://discordapp.com/invite/yy75DKs

27

predecessor to SvelteKit

Svelte

Conclusion

Svelte is a worthy alternative 
to React, Vue, and Angular

Check out my book

https://www.manning.com/books/svelte-and-sapper-in-action

28

D
X

DOM Angular React Svelte Vue

UX is similar for all, 
but built-in animations in Svelte 
may encourage their use.

