
GOTOp i a C h i c a g o O n l i n e 2 0 2 1 - 0 4 - 2 0

Is DDD Overrated?
Stefan Tilkov

@stilkov

Domain-driven design

@stilkov

An approach to designing software that emphasizes
domain knowledge over technical aspects and
supports users within a domain via a model

implemented in software

Domain-driven design defined

@stilkov

DDD is an approach to the development of
complex software in which we:

1. Focus on the core domain

2. Explore models in a creative collaboration

of domain practitioners and software
practitioners

3. Speak a ubiquitous language within an
explicitly bounded context

Eric Evans, https://www.domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf

Domain-driven design defined

@stilkov

A common language for domain experts and
technical team members

Key aspect #1: Ubiquitous Language

@stilkov

A set of building blocks to structure the
implementation of a model according to best

practices: Entity, Aggregate, Value Object, Service,
Domain Event, Repository, Factory, Module

Key aspect #2: Tactical patterns

@stilkov

Context maps to visualize bounded contexts and
their relationships/connections: Partnership,

Conformist, Customer/Supplier, Anticorruption
Layer, Open-host Service, Published Language,

Shared Kernel

Key aspect #3: Strategic design

@stilkov

«bc»

Accounting

«bc»

OrderMgmt

Customer

Account

ProductCustomer

Order

Product

«bc»

Fulfilment

Customer

Shipment

Product

Conceptual extensibility

@stilkov

Ubiquitous language exists on multiple levels. On the
meta-level, the languages, idioms and patterns used
by team members support design collaboration, too

Generalization: Models and language

@stilkov

Shared language (“jargon”) supports
communication among domain team members. It

evolves according to reoccurring needs

Extensible jargon

@stilkov

Any set of pre-defined, “best practices” patterns is
a starting point, not an end in itself

Extensible, not fixed

@stilkov

Entity, Aggregate, Value Object, Service, Domain
Event, Repository, Factory, Module,

Extending tactical patterns

Filter, Rule, Proxy, Contract, Role, Reference, …
[insert whatever makes sense to you]

@stilkov

Partnership, Conformist, Customer/Supplier,
Anticorruption Layer, Open-host Service, Published

Language, Shared Kernel,

Extending context relationships

Formal Contract, Shared Spec, 3rd Party Standard, …
[insert whatever makes sense to you]

Should design be domain-driven?

@stilkov

Domain allergy: preferring to explore
cool technology to being bothered by
learning domain concepts; a disease
common among technical developers

@stilkov

Core
business
logic

Network

Docum
ent StoreUs

er
 In
te
rfa

ce

Da
ta
ba
se

Ad
ap
te
r

Adapter

Adapter

Ad
ap
te
r

Po
rt

Po
rt

Port

Port

Ports and Adapters
Hexagonal Architecture
Clean Architecture

@stilkov

Reality aversion: a failure to recognize
that theoretical models tend to break
down in practice; a condition often
observed among public speakers

Should design be domain-driven?

@stilkov

No: Not every software
needs to be built using a

technology-neutral OO core

Yes: Every design should be
driven by the domain, not

by technology

@stilkov

Focus on using an RDBMS and its abstractions
(tables, views, joins, stored procedures …) for high-

performance, data-centric applications

Relational

@stilkov

Drive design from UI prototypes validated with user
experiments, focus on minimalistic, lean

implementations to quickly gather feedback, only
evolve what works as desired

UX/UI/U-driven

@stilkov

Use mathematical/functional models to generalize/
abstract domain models, apply combinatorial rules

to discover new domain logic

Algebraic/Denotational

@stilkov

Create technology-independent models outside of
programming language environments, use domain-
specific languages and model-driven development

Model-driven

Contexts revisited

@stilkov

A description of a boundary (typically a subsystem
or the work of a particular team) within which a

particular model is defined and applicable

Bounded Context: Definition

Eric Evans, https://www.domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf

@stilkov

«bc»

Accounting

«bc»

OrderMgmt

Customer

Account

ProductCustomer

Order

Product

«bc»

Fulfilment

Customer

Shipment

Product

@stilkov

«bc»

Accounting

«bc»

OrderMgmt

Customer

Account

ProductCustomer

Order

Product

«bc»

Fulfilment

Customer

Shipment

Product

Implementation Strategy:
UX-driven

Implementation Strategy:
Tactical DDD

Implementation Strategy:
Relational

So – is DDD overrated?

@stilkov

… but you may have been doing it with another name
Strategic DDD is a great starting point for large systems

@stilkov

… but it’s best viewed as a micro-level decision
Tactical DDD is one of many great starting points

@stilkov

… but no solution is the only viable one
I really appreciate DDD and its community

Summary

@stilkov

No single approach will workin 100% of all cases,

or even 50% – adjust your expectations.

1. Don’t look for just one thing

@stilkov

Following rules at the start is fine,

but don’t be dogmatic

2. Use recipes as starting points

@stilkov

Don’t be afraid to use the best tool for the job,

even if it’s uncool, old-fashioned or unusual

3. Use contexts as decision spheres

Krischerstr. 100

40789 Monheim

+49 2173 3366-0

Ohlauer Str. 43 
10999 Berlin

 

Ludwigstr. 180E 
63067 Offenbach

 

Kreuzstr. 16 
80331 München

 

Hermannstrasse 13 
20095 Hamburg

 

Erftstr. 15-17

50672 Köln

 

Königstorgraben 11

90402 Nürnberg

innoQ Deutschland GmbH

www.innoq.com
Thank you! Questions?

Stefan Tilkov

stefan.tilkov@innoq.com

+49 170 471 2625

@stilkov

