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Domain-driven design
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An approach to designing software that emphasizes 
domain knowledge over technical aspects and 
supports users within a domain via a model 

implemented in software

Domain-driven design defined



@stilkov

DDD is an approach to the development of 
complex software in which we:

1. Focus on the core domain

2. Explore models in a creative collaboration 

of domain practitioners and software 
practitioners


3. Speak a ubiquitous language within an 
explicitly bounded context 

Eric Evans, https://www.domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf

Domain-driven design defined
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A common language for domain experts and 
technical team members

Key aspect #1: Ubiquitous Language
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A set of building blocks to structure the 
implementation of a model according to best 

practices: Entity, Aggregate, Value Object, Service, 
Domain Event, Repository, Factory, Module

Key aspect #2: Tactical patterns
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Context maps to visualize bounded contexts and 
their relationships/connections: Partnership, 

Conformist, Customer/Supplier, Anticorruption 
Layer, Open-host Service, Published Language, 

Shared Kernel

Key aspect #3: Strategic design
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Conceptual extensibility
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Ubiquitous language exists on multiple levels. On the 
meta-level, the languages, idioms and patterns used 
by team members support design collaboration, too

Generalization: Models and language
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Shared language (“jargon”) supports 
communication among domain team members. It 

evolves according to reoccurring needs

Extensible jargon
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Any set of pre-defined, “best practices” patterns is 
a starting point, not an end in itself

Extensible, not fixed
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Entity, Aggregate, Value Object, Service, Domain 
Event, Repository, Factory, Module, 


Extending tactical patterns

Filter, Rule, Proxy, Contract, Role, Reference, …
[insert whatever makes sense to you]
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Partnership, Conformist, Customer/Supplier, 
Anticorruption Layer, Open-host Service, Published 

Language, Shared Kernel,

Extending context relationships

Formal Contract, Shared Spec, 3rd Party Standard, …
[insert whatever makes sense to you]



Should design be domain-driven?
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Domain allergy: preferring to explore 
cool technology to being bothered by 
learning domain concepts; a disease 
common among technical developers
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Reality aversion: a failure to recognize 
that theoretical models tend to break 
down in practice; a condition often 
observed among public speakers



Should design be domain-driven?
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No: Not every software 
needs to be built using a 

technology-neutral OO core 

Yes: Every design should be 
driven by the domain, not 

by technology
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Focus on using an RDBMS and its abstractions 
(tables, views, joins, stored procedures …) for high-

performance, data-centric applications

Relational
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Drive design from UI prototypes validated with user 
experiments, focus on minimalistic, lean 

implementations to quickly gather feedback, only 
evolve what works as desired

UX/UI/U-driven
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Use mathematical/functional models to generalize/
abstract domain models, apply combinatorial rules 

to discover new domain logic 

Algebraic/Denotational
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Create technology-independent models outside of 
programming language environments, use domain-
specific languages and model-driven development

Model-driven



Contexts revisited
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A description of a boundary (typically a subsystem 
or the work of a particular team) within which a 

particular model is defined and applicable

Bounded Context: Definition

Eric Evans, https://www.domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf



@stilkov

«bc»

Accounting

«bc»

OrderMgmt

Customer

Account

ProductCustomer

Order

Product

«bc»

Fulfilment

Customer

Shipment

Product



@stilkov

«bc»

Accounting

«bc»

OrderMgmt

Customer

Account

ProductCustomer

Order

Product

«bc»

Fulfilment

Customer

Shipment

Product

Implementation Strategy: 
UX-driven

Implementation Strategy: 
Tactical DDD

Implementation Strategy: 
Relational



So – is DDD overrated?
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… but you may have been doing it with another name
Strategic DDD is a great starting point for large systems
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… but it’s best viewed as a micro-level decision
Tactical DDD is one of many great starting points
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… but no solution is the only viable one
I really appreciate DDD and its community



Summary
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No single approach will workin 100% of all cases,

or even 50% – adjust your expectations.

1. Don’t look for just one thing
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Following rules at the start is fine,

but don’t be dogmatic

2. Use recipes as starting points
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Don’t be afraid to use the best tool for the job,

even if it’s uncool, old-fashioned or unusual

3. Use contexts as decision spheres
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