
Tim Berglund

Build a Real-Time
Analytics Database

a choose your own adventure journey

@tlberglund

YOU’RE THE STAR OF THE STORY!
CHOOSE FROM WAY TOO MANY POSSIBLE ENDINGS!

MOST OF WHICH ARE BAD!

What do you want to do with
your data?

1. I want to remember what has happened
2. I want to keep track of things
3. I want to understand what is happening

What do you want to do with your data?

1. Remember
2. Keep track
3. Understand

You want a distributed log
• Apache Kafka
• Apache Pulsar
• AWS Kinesis

What do you want to do with your data?

1. Remember
2. Keep track
3. Understand

You want an OLTP database
• CRUD over entities
• Postgres
• MySQL
• Oracle I guess
• Focused on “this thing”

What do you want to do with your data?

1. Remember
2. Keep track
3. Understand

You want an OLAP database
• Measurements
• Dimensions
• Insights
• Focused on “these things”

How do you want to
represent your data?

1. Key/value pairs
2. Documents
3. Tuples

How do you want to represent your data?

1. Key/value pairs
2. Documents
3. Tuples

You have died.
• Okay, not really
• But this is not a good OLAP

option
• Maybe we’ll revisit this later…

How do you want to represent your data?

1. Key/value pairs
2. Documents
3. Tuples

Interesting choice!
• Schema flexibility
• Soooo many more choices

to make
• MongoDB

How do you want to represent your data?

1. Key/value pairs
2. Documents
3. Tuples

You are a normal person
• Inheriting a tradition
• Implies tables
• The relational algebra

How do you want to serialize
your data?

1. By row
2. By column

How do you want to serialize your data?

1. By row
2. By column

Whole documents/tuples
• Batch up the field K/V pairs,

stream the bytes
• Very OLTP-aligned: focused on

the one thing
• Lots of OLAP gets done this way!

How do you want to serialize your data?

1. By row
2. By columns

Column Databases
• OLAP wants “these things,” not

“this thing”
• You are usually aggregating just

one measurement
• Besides, it’s more compressible!

What query language do you
want to use?

1. None
2. A custom API
3. A custom language
4. SQL

What query language do you want to use?

1. None
2. API
3. Custom
4. SQL

You have died. Again.
• This was Hadoop
• Map/Reduce programming

was not a net improvement
to human flourishing

What query language do you want to use?

1. None
2. API
3. Custom
4. SQL

Kafka Streams
• Or solutions like it
• Limited to the given

language bindings
• Sometimes very good

What query language do you want to use?

1. None
2. API
3. Custom
4. SQL

Your own query language!
• This is fine if you’re Mongo
• You will still be writing your

docs with SQL examples until
the heat death of the universe

• Also it takes a lot of energy

What query language do you want to use?

1. None
2. API
3. Custom
4. SQL

You are a normal person
• You might try to avoid this
• You will probably fail
• You are again inheriting a

substantial tradition

How do you want to organize
storage?

Wait, the question is actually…

Can things change?

1. Yes, my data is mutable
2. No, my data is [pretty much] immutable

Can things change?

1. Mutable data
2. Immutable data Implied storage architecture

• Pages: read/modify/write
• LSM trees: log/flush/

compact

Can things change?

1. Mutable data
2. Immutable data Still can’t really answer the

question. It implies another
question about
dimensionality, which often
presents as a question
about…indexing.

How many dimensions do
tables have?

1. Just one
2. Lots

How many dimensions do tables have?

1. Just one
2. Lots

Then you only need one index
• Kafka/KafkaStreams
• Kafka/ksqlDB
• Cassandra
• RocksDB
• Any old K/V store will do

But wait…isn’t this OLAP?

• I thought you said k/v stores were not good OLAP
databases

• And we did choose OLAP at the start of our journey

• Analytical data is usually highly dimensional: I clicked
on that site, but I am male, live in Colorado, use Brave
1.39, OSX 12.4, etc.

• If it’s not all that dimensional, I can pre-aggregate and
use whatever fast key/value store I want

How many dimensions do tables have?

1. Just one
2. Lots Now you need indexes. This is

its own lengthy side quest.

Indexes

Forward Index

• “Where is row X?”

• Remember that this is a column database. Bits of rows
are stored everywhere.

• The real question is: where is this column for this row?

• Wait…what’s a row?

• docID

Forward Index

0

1

2

3

Littleton

Prague

docID

Mountain View

location

4

0, Littleton
1, Littleton
2, Mountain View
3, Prague
4, Mountain View

Inverted Index
• “What rows does this value occur in?”
• Give it a value, it gives you a list of docIDs

Inverted Index

term docID

0,1

3

2,4

Littleton

Prague
Mountain View

0, Littleton
1, Littleton
2, Mountain View
3, Prague
4, Mountain View

Bloom Filter Index
• Helps predict whether to check a particular segment for a docID
• If it says no, the answer is certainly no
• If it says yes, the answer might be yes
• Maintains a space-efficient, in-memory bitmap
• Only works on dictionary-encoded columns
• Accelerates equality predicates only

Text Index
• Exact-match term queries are supported by the inverted index
• Text BLOB columns often need regex, phrase, and fuzzy matches
• Supported expressions:

• Phrase: ‘“PETG filament”’
• Term: ‘filament’
• Boolean: ‘“PETG filament” AND “red”’
• Prefix: ‘filam*’
• Regex: ‘/P[L|E][A|T]G? filament/‘

SELECT COUNT(*)
FROM Inventory
WHERE TEXT_MATCH ('description', '<search_expression>')

Geospatial Index
• Based on the H3 library from Uber

• Hexagon-based decomposition of geospace

• Support arbitrary points, polygons

• Distance, within, contains as predicates

• https://docs.pinot.apache.org/basics/indexing/geospatial-support

SELECT address, ST_DISTANCE(location_st_point, ST_Point(-122, 37, 1))
FROM starbucksStores
WHERE ST_DISTANCE(location_st_point, ST_Point(-122, 37, 1)) < 5000
limit 1000

https://docs.pinot.apache.org/basics/indexing/geospatial-support

JSON Index
{
 "name": "adam",
 "age": 30,
 "country": "us",
 "addresses":
 [
 {
 "number" : 112,
 "street" : "main st",
 "country" : "us"
 },
 {
 "number" : 2,
 "street" : "second st",
 "country" : "us"
 },
 {
 "number" : 3,
 "street" : "third st",
 "country" : "ca"
 }
]
}

SELECT ...
FROM personnel
WHERE JSON_MATCH(person, '"$.name"=''adam''')

Simple key lookup

JSON Index
{
 "name": "adam",
 "age": 30,
 "country": "us",
 "addresses":
 [
 {
 "number" : 112,
 "street" : "main st",
 "country" : "us"
 },
 {
 "number" : 2,
 "street" : "second st",
 "country" : "us"
 },
 {
 "number" : 3,
 "street" : "third st",
 "country" : "ca"
 }
]
}

SELECT ...
FROM personnel
WHERE JSON_MATCH(person, '"$.addresses[*].number"=112')

Chained key lookup

JSON Index
{
 "name": "adam",
 "age": 30,
 "country": "us",
 "addresses":
 [
 {
 "number" : 112,
 "street" : "main st",
 "country" : "us"
 },
 {
 "number" : 2,
 "street" : "second st",
 "country" : "us"
 },
 {
 "number" : 3,
 "street" : "third st",
 "country" : "ca"
 }
]
}

SELECT ...
FROM personnel
WHERE JSON_MATCH(person,
 ‘"$.name"=''adam'' AND "$.addresses[*].number"=112')

Nested filter expression

JSON Index
{
 "name": "adam",
 "age": 30,
 "country": "us",
 "addresses":
 [
 {
 "number" : 112,
 "street" : "main st",
 "country" : "us"
 },
 {
 "number" : 2,
 "street" : "second st",
 "country" : "us"
 },
 {
 "number" : 3,
 "street" : "third st",
 "country" : "ca"
 }
]
}

SELECT ...
FROM personnel
WHERE JSON_MATCH(person, '"$.addresses[0].number"=112')

Array access

Timestamp Index

• Applies to columns of type TIMESTAMP (shockingly)

• Like an inverted index, but uses date ranges for keys

• Ranges (“granularity”) are configurable at index
definition time

Timestamp Index

range (DAY) docID

0

1,3

2,4

July 7, 2022

July 8, 2022
July 9, 2022

0, 20220707T1449
1, 20220708T0543
2, 20220709T0128
3, 20220708T2150
4, 20220709T1507

StarTree Index

• We often want to compute aggregates predicated on
multiple dimensions

• This is what a pivot table does in a spreadsheet

• The StarTree index is like writing a pivot table to disk

The data set

The Tree Itself

Documents in the Index

How fast do you need it?

1. Dashboard speed
2. UI speed

How fast do you need it?

1. Dashboard speed
2. UI speed Reporting and dashboards

• Queries that take seconds
are fine

• Batch ingest is fine

How fast do you need it?

1. Dashboard speed
2. UI speed Powering the UI with

analytics
• 100ms is a long time
• Streaming ingest is

required

How do you want to scale?

1. Single-process (I don’t)
2. Distributed (I do)

How do you want to scale?

1. Single-process
2. Distributed

You have chosen a good life
• You own the storage
• You serialize a single stream of

reads and mutations
• You’ll never get all that big
• Unless you replicate and shard, but

I just said you chose a good life

How do you want to scale?

1. Single-process
2. Distributed You have chosen to scale

compute and storage. You
have so many options. Best
just to talk about how Pinot
works.

Seg1 -> Server 1
Seg2 -> Server 2
Seg3 -> Server 3
Seg4 -> Server 1

Pinot Architecture

Pinot
Controller Zookeeper

Server 2Server 1

Pinot Servers

Server 3

Pinot
BrokerPinot
Brokers

Scatter - gather

Batch data ingest

2 341

1

Queries

Real-time Ingestion

Server 3Server 2Server 1

2 341

Seg1 -> Server 1
Seg2 -> Server 2
Seg3 -> Server 3
Seg4 -> Server 1

Pinot
BrokerPinot
Brokers

Pinot Servers

Pinot
Controller Zookeeper

1

Queries

Real-time analytics

• Latency

• Concurrency

• Freshness

• Apache Pinot

Thank you!

@tlberglund

https://stree.ai/slack

https://stree.ai/slack

