
Kelly Shortridge @swagitda_ | @shortridge GOTO Chicago 2023

PRACTICAL MAGIC:
THE RESILIENCE POTION AND

SECURITY CHAOS ENGINEERING

shortridge@hachyderm.io | @swagitda_

Everything is a system in transition. Our
requirements will change. Contexts evolve.

2

shortridge@hachyderm.io | @swagitda_

Poor engineers design for other engineers.

3

shortridge@hachyderm.io | @swagitda_

Mediocre engineers design for the future they
imagine.

4

shortridge@hachyderm.io | @swagitda_

Good engineers design for change.

5

shortridge@hachyderm.io | @swagitda_

If we pursue resilience, we can improve
software quality at the same time as security.

6

shortridge@hachyderm.io | @swagitda_

What principles, practices, and tools should we
adopt so we can sustain software resilience?

7

shortridge@hachyderm.io | @swagitda_

We can imbibe the Resilience Potion.

8

What is resilience?

shortridge@hachyderm.io | @swagitda_

Failure is inevitable; it’s a natural part of
complex systems as they operate

10

shortridge@hachyderm.io | @swagitda_

Our software is also a complex system; but our
beliefs about it don’t always align with reality

11

shortridge@hachyderm.io | @swagitda_

The software we design, build, and operate
reflects our mental models of reality.

12

shortridge@hachyderm.io | @swagitda_

Every time you encounter a bug, that is the diff
between your mental model and reality

13

shortridge@hachyderm.io | @swagitda_14

shortridge@hachyderm.io | @swagitda_

Surprise is “the revelation that a given
phenomenon of the environment was, until this
moment, misinterpreted.”

15

shortridge@hachyderm.io | @swagitda_

We must “prepare to be surprised.”

16

shortridge@hachyderm.io | @swagitda_

Complex systems are adaptive: they evolve in
response to changes in their environment.

17

shortridge@hachyderm.io | @swagitda_

Adaptive capacity: how poised a system is to
change how it works based on context

18

shortridge@hachyderm.io | @swagitda_

Resilience is “the ability to prepare and plan
for, absorb, recover from, and more
successfully adapt to adverse events.”

19

shortridge@hachyderm.io | @swagitda_

Security Chaos Engineering (SCE):
a socio-technical transformation that enables the
organizational ability to gracefully respond to
failure and adapt to evolving conditions.

20

shortridge@hachyderm.io | @swagitda_

We can imbibe the Resilience Potion to help us
on our journey to sustain software resilience…

21

shortridge@hachyderm.io | @swagitda_22

The Resilience
Potion

shortridge@hachyderm.io | @swagitda_

There are five ingredients to sustain resilience…

23

shortridge@hachyderm.io | @swagitda_

Define the system’s
critical functions

24

shortridge@hachyderm.io | @swagitda_

Define the system’s
safe boundaries

25

shortridge@hachyderm.io | @swagitda_

Observe system
interactions across

spacetime

26

shortridge@hachyderm.io | @swagitda_

Feedback loops and a
learning culture

27

shortridge@hachyderm.io | @swagitda_

Flexibility and
willingness to change

28

shortridge@hachyderm.io | @swagitda_

How can we brew this potion when we develop
and deliver software? Opportunities abound…

29

I. Critical
Functionality

shortridge@hachyderm.io | @swagitda_

Our aim is simplicity and understandability of
critical functions when we develop code

31

The Airlock Approach

shortridge@hachyderm.io | @swagitda_

During dev, we need to define what we can
“throw out of the airlock.”

33

shortridge@hachyderm.io | @swagitda_

What parts would you like to be able to neglect
during an incident?

34

shortridge@hachyderm.io | @swagitda_

If a non-critical component is compromised, the
airlock approach allows you to shut it off

35

shortridge@hachyderm.io | @swagitda_

If processing transactions is your critical
function, throw reporting “out the airlock”

36

Choose “boring” tech

shortridge@hachyderm.io | @swagitda_

Dan McKinley: boring is not inherently bad; it
likely indicates well-understood capabilities

38

shortridge@hachyderm.io | @swagitda_

The end user doesn’t care if HackerNews thinks
you did something super cool

39

shortridge@hachyderm.io | @swagitda_

End users want to use your service whenever
they want, as quickly as they want, and with the
functionality they want.

40

shortridge@hachyderm.io | @swagitda_

Sometimes solving business problems does
require fancy tech as a market differentiator

41

shortridge@hachyderm.io | @swagitda_

P.S. attackers love when devs adopt tools that
aren’t well understood yet….

42

shortridge@hachyderm.io | @swagitda_

Optimize for the “least-worst” tools for as many
non-differentiator problems as you can

43

Standardizing raw materials

shortridge@hachyderm.io | @swagitda_

“Raw materials” in software systems: languages,
libraries, and tooling

45

shortridge@hachyderm.io | @swagitda_

Yes, we’re going to talk about memory safety,
the hottest software quality trend for S/S 2023

46

shortridge@hachyderm.io | @swagitda_

Memory safety: memory resource management
is handled by the language and runtime itself

47

shortridge@hachyderm.io | @swagitda_

We can think of C code like lead; convenient,
but it’s poisoning us over time as it accumulates

48

shortridge@hachyderm.io | @swagitda_

YOYD + YEET: You own our dependencies
(YOYD) so yeet the hazardous ones away

49

shortridge@hachyderm.io | @swagitda_

<(curl –s https://stinkytool.io/bash)

You can feel its radioactive heat from here.

50

shortridge@hachyderm.io | @swagitda_

General principle: consider the n-order effects
of raw materials when developing & delivering

51

shortridge@hachyderm.io | @swagitda_

Data can also be a hazardous material; we can
and should isolate access to sensitive data

52

II. Expanding
Safety Boundaries

shortridge@hachyderm.io | @swagitda_

We should understand the system’s safety
boundaries – but we can also expand them

54

shortridge@hachyderm.io | @swagitda_

Rather than relying on everything being perfect
pre-deploy, we can cope well with mistakes

55

shortridge@hachyderm.io | @swagitda_

A lot of getting security “right” is just solid
engineering. Security is a facet of quality.

56

Anticipating scale

shortridge@hachyderm.io | @swagitda_

How might operating conditions evolve?
Where do the system’s safety boundaries lie?

58

shortridge@hachyderm.io | @swagitda_

Challenging our “this will always be true”
assumptions can expose scalability issues

59

shortridge@hachyderm.io | @swagitda_

“On every incoming request, we first need to
correlate it with the user’s prior shopping cart
– which means making a query to this other
thing.”

60

shortridge@hachyderm.io | @swagitda_

We must anticipate what ops / SRE will need
when responding to incidents

61

shortridge@hachyderm.io | @swagitda_

Attackers also target our “this will always be
true” assumptions that exist all over our stack.

62

shortridge@hachyderm.io | @swagitda_

Parsing this string
will always be fast

63

shortridge@hachyderm.io | @swagitda_

Messages on this
port will always be
post-authentication

64

shortridge@hachyderm.io | @swagitda_

An alert will always fire if a
malicious executable appears

65

Standardizing patterns and tools

shortridge@hachyderm.io | @swagitda_

Standardization: ensuring work produced is
consistent with preset guidelines

67

shortridge@hachyderm.io | @swagitda_

Prioritize patterns for parts of the system with
the biggest security implications

68

shortridge@hachyderm.io | @swagitda_

Hazardous methods can look like roll-your-own:
crypto, database, logging pipeline, etc.

69

shortridge@hachyderm.io | @swagitda_

SQLi can be characterized as the result of
rolling your own database query builder

70

shortridge@hachyderm.io | @swagitda_71

shortridge@hachyderm.io | @swagitda_

Give teams a list of well-vetted libraries &
service providers they should choose from

72

shortridge@hachyderm.io | @swagitda_

Paved roads: well-integrated, supported
solutions to common problems that allow
humans to focus on their unique value creation

73

Understanding dependencies

shortridge@hachyderm.io | @swagitda_

Understand faults in our tools so we can fix or
mitigate them – or even consider better tools

75

shortridge@hachyderm.io | @swagitda_

When should you care about a security vuln?

76

shortridge@hachyderm.io | @swagitda_

1. How easy is the attack to automate & scale?
2. How many steps away is the attack from the

attacker’s goal outcome?

77

III. Observing
System Interactions

across Spacetime

shortridge@hachyderm.io | @swagitda_

We must observe how our systems’ behaviors
unfold over time and across their topology

79

shortridge@hachyderm.io | @swagitda_

We can also make interactions more linear –
curtailing the number of “baffling” interactions

80

Testing

shortridge@hachyderm.io | @swagitda_

Are we testing for resilience or quality over
time, or just to say that we did testing?

82

shortridge@hachyderm.io | @swagitda_

The tests we write are an artifact of our mental
models at a certain point in spacetime

83

shortridge@hachyderm.io | @swagitda_

Prioritize tests that refine our mental models
and can adapt as system context evolves

84

shortridge@hachyderm.io | @swagitda_

Integration tests can be a valuable first pass at
uncovering “baffling” interactions

85

shortridge@hachyderm.io | @swagitda_

The AttachMe vuln is an example of what we
hope to uncover with integration tests

86

shortridge@hachyderm.io | @swagitda_

Integration tests for attaching a disk to a VM in
another account, spikes in resource nom nom…

87

shortridge@hachyderm.io | @swagitda_

A single input in one component is insufficient
for reproducing catastrophic failures in tests

88

(Security) chaos experiments

shortridge@hachyderm.io | @swagitda_

Our goal is to uncover “baffling interactions” in
our systems that defy our expectations.

90

shortridge@hachyderm.io | @swagitda_

We can do so through chaos experiments:
resilience stress tests for software systems.

91

shortridge@hachyderm.io | @swagitda_

Chaos experiments help us more quickly learn
about system behavior and its context.

92

shortridge@hachyderm.io | @swagitda_

Example: critical services need to authenticate
incoming traffic – but consistent auth is hard

93

shortridge@hachyderm.io | @swagitda_

Create an experiment for evidence of which
services automatically require authN

94

shortridge@hachyderm.io | @swagitda_

“In the event of unauthenticated traffic, we
expect our service endpoints will respond with
an authentication challenge.”

95

shortridge@hachyderm.io | @swagitda_

Is our org’s chosen authN middleware present
in everything we deploy? Collect evidence!

96

shortridge@hachyderm.io | @swagitda_

Hypothesis proven incorrect: authN is not
validated properly everywhere + no alerts

97

shortridge@hachyderm.io | @swagitda_

Evidence informs design changes to our
middleware and observability pipelines

98

shortridge@hachyderm.io | @swagitda_

But more questions remain: were there other
failures associated with this scenario? Did we
receive alerts elsewhere? Any reported issues?

99

shortridge@hachyderm.io | @swagitda_100

shortridge@hachyderm.io | @swagitda_101

shortridge@hachyderm.io | @swagitda_102

shortridge@hachyderm.io | @swagitda_103

shortridge@hachyderm.io | @swagitda_104

IV. Feedback Loops
and Learning

shortridge@hachyderm.io | @swagitda_

We must learn from system behavior during
adverse events and use it to inform change

106

shortridge@hachyderm.io | @swagitda_

We need ways to summon, preserve, and learn
from these memories for a feedback loop

107

Distributed tracing

shortridge@hachyderm.io | @swagitda_

It’s difficult to look at breadcrumbs left by the
system that aren’t brought together in a story

109

shortridge@hachyderm.io | @swagitda_

You can’t form a feedback loop without being
able to see what’s going on over time.

110

shortridge@hachyderm.io | @swagitda_

We should plan for and build this feedback into
our services through tracing and logging.

111

shortridge@hachyderm.io | @swagitda_

Distributed tracing lets us observe the flow of
data as it pours through a distributed system

112

shortridge@hachyderm.io | @swagitda_

We can assign a trace ID at the point of traffic
ingress and follow the event as it flows through

113

shortridge@hachyderm.io | @swagitda_

Case study: an attacker exfiltrating data from a
hospital’s patient portal

114

shortridge@hachyderm.io | @swagitda_115

Patient
Portal
service

Token service

Labs service

Schedule
service

Frontend

In-house Labs
service

Partner’s Lab
Report integration

service

User

shortridge@hachyderm.io | @swagitda_

How do we trace the data flows from all the
requests from the Labs service and beyond?

116

shortridge@hachyderm.io | @swagitda_

Distributed tracing dissipates this nightmare by
assigning a trace ID at the traffic ingress point

117

shortridge@hachyderm.io | @swagitda_

Distributed tracing also helps us refine system
design and design new, better versions

118

shortridge@hachyderm.io | @swagitda_

We need to understand the impact a potential
design change has on our tree of consumers

119

shortridge@hachyderm.io | @swagitda_

Dist tracing helps us refine that mental model
by learning about real interactions in the system

120

shortridge@hachyderm.io | @swagitda_

It makes the statement that we want to correlate
data across systems – that we want that trace ID

121

V. Flexibility and
Willingness to

Change

shortridge@hachyderm.io | @swagitda_

We must remain flexible in the face of failures
and evolving conditions

123

shortridge@hachyderm.io | @swagitda_

Nature is a patient architect, allowing evolution
to bloom over generational cycles

124

shortridge@hachyderm.io | @swagitda_

We need strategies that promote the speed on
which our graceful adaptability depends

125

Preserving possibilities for refactoring

shortridge@hachyderm.io | @swagitda_

No one thinks about the remake when they film
the original – same with code and refactoring

127

shortridge@hachyderm.io | @swagitda_

We must anticipate that code will change and
make decisions that support flexibility to do so

128

shortridge@hachyderm.io | @swagitda_

We need an easy path to safely restructure
abstractions, data models, and approaches

129

shortridge@hachyderm.io | @swagitda_

Type systems are often thought of as a way to
resist change, but they can facilitate change

130

shortridge@hachyderm.io | @swagitda_

Type declarations can help us preserve
possibilities when developing code

131

shortridge@hachyderm.io | @swagitda_

A type is a set of requirements declaring what
operations can be performed on values that are
considered to conform to the type.

132

shortridge@hachyderm.io | @swagitda_

Static typing can make it easier to refactor since
type errors help guide the migration.

133

shortridge@hachyderm.io | @swagitda_

If we pass around Int64s to represent a time-
stamp, then call them “Timestamp” for clarity

134

shortridge@hachyderm.io | @swagitda_

The more clarity we can crystallize around the
system’s functions, the more we can adapt

135

Modularity

shortridge@hachyderm.io | @swagitda_

Engineers fundamentally misunderstand
modularity with respect to resilience

137

shortridge@hachyderm.io | @swagitda_

So many interactions can subvert boundaries

138

shortridge@hachyderm.io | @swagitda_

Modularity allows “structurally or functionally
distinct parts to retain autonomy during a
period of stress and allows for easier recovery.”

139

shortridge@hachyderm.io | @swagitda_

Modularity is a system property reflecting the
degree to which components can be decoupled

140

shortridge@hachyderm.io | @swagitda_

Humans have intuitively grasped how
modularity supports resilience for millenia

141

shortridge@hachyderm.io | @swagitda_

During a disturbance, a modular feature can
function independently of other features

142

shortridge@hachyderm.io | @swagitda_143

shortridge@hachyderm.io | @swagitda_

When there’s low modularity, failure cascades
pervade – it enables contagion effects

144

shortridge@hachyderm.io | @swagitda_

Ransomware’s success relies on low modularity

145

shortridge@hachyderm.io | @swagitda_

A system with high modularity can contain or
“buffer” stressors and surprises

146

shortridge@hachyderm.io | @swagitda_

Modules create a local boundary for isolation

147

shortridge@hachyderm.io | @swagitda_

Isolation is a core property that supports
software and systems resilience

148

shortridge@hachyderm.io | @swagitda_

In software, we’re lucky that we can isolate
failure to handle unexpected interactions

149

shortridge@hachyderm.io | @swagitda_

Start “boring”: set AWS security groups – or
use serverless functions, containers, or VMs

150

shortridge@hachyderm.io | @swagitda_

RLBox: trap C code in a WebAssembly (Wasm)
sandbox to isolate hazardous subcomponents

151

shortridge@hachyderm.io | @swagitda_

If a vulnerable component is in a sandbox, the
attacker faces a challenge to reach their goal

152

shortridge@hachyderm.io | @swagitda_

Modularity makes navigating and updating the
system easier, too

153

shortridge@hachyderm.io | @swagitda_

Chaos experiments show us to what extent our
modular boundaries are useful for resilience

154

Strangler Fig

shortridge@hachyderm.io | @swagitda_

How can we change our system without
contaminating critical functionality?

156

shortridge@hachyderm.io | @swagitda_

The Strangler Fig pattern supports our capacity
to change and helps us maintain flexibility

157

shortridge@hachyderm.io | @swagitda_158

shortridge@hachyderm.io | @swagitda_159

shortridge@hachyderm.io | @swagitda_

Stranger Fig is the conservative approach – but
usually also the faster and sustainable one

160

shortridge@hachyderm.io | @swagitda_

We also need to transform the socio part;
humans’ mental models are often sticky.

161

shortridge@hachyderm.io | @swagitda_

The new principles and practices we adopt
when changing need incremental iteration, too

162

Savoring our Potion

shortridge@hachyderm.io | @swagitda_

Resilience means organizations respond to
failure & adapt to evolving conditions with grace

164

shortridge@hachyderm.io | @swagitda_

We can foster the five key ingredients we need
to brew the Resilience Potion during dev

165

shortridge@hachyderm.io | @swagitda_

We can define our critical functions and
prioritize preserving them in adverse conditions

166

shortridge@hachyderm.io | @swagitda_

We can understand and expand our system’s
boundaries of safe operation

167

shortridge@hachyderm.io | @swagitda_

We can observe system interactions across
space-time and make them more understandable

168

shortridge@hachyderm.io | @swagitda_

We can foster feedback loops, ensuring we learn
about our systems quickly to inform change

169

shortridge@hachyderm.io | @swagitda_

And we can remain flexible in the face of failures
and evolving conditions, ever poised to change

170

shortridge@hachyderm.io | @swagitda_

Order the book today:
Amazon
Bookshop
& other major retailers

171

https://www.amazon.com/Security-Chaos-Engineering-Developing-Resilience/dp/1098113829
https://bookshop.org/p/books/security-chaos-engineering-developing-resilience-and-safety-at-speed-and-scale-aaron-rinehart/18793471?ean=9781098113827

shortridge@hachyderm.io | @swagitda_

/in/kellyshortridge

@swagitda_

@shortridge.bsky.social

172

shortridge@hachyderm.io

chat@shortridge.io

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172

