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PRACTICAL MAGIC: 
THE RESILIENCE POTION AND

SECURITY CHAOS ENGINEERING
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Everything is a system in transition. Our 
requirements will change. Contexts evolve.
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Poor engineers design for other engineers. 
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Mediocre engineers design for the future they 
imagine.
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Good engineers design for change.
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If we pursue resilience, we can improve 
software quality at the same time as security.
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What principles, practices, and tools should we 
adopt so we can sustain software resilience?

7



shortridge@hachyderm.io | @swagitda_

We can imbibe the Resilience Potion.
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What is resilience?
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Failure is inevitable; it’s a natural part of 
complex systems as they operate
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Our software is also a complex system; but our 
beliefs about it don’t always align with reality
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The software we design, build, and operate 
reflects our mental models of reality.
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Every time you encounter a bug, that is the diff 
between your mental model and reality
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Surprise is “the revelation that a given 
phenomenon of the environment was, until this 
moment, misinterpreted.”
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We must “prepare to be surprised.”
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Complex systems are adaptive: they evolve in 
response to changes in their environment.
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Adaptive capacity: how poised a system is to 
change how it works based on context
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Resilience is “the ability to prepare and plan 
for, absorb, recover from, and more 
successfully adapt to adverse events.”
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Security Chaos Engineering (SCE): 
a socio-technical transformation that enables the 
organizational ability to gracefully respond to 
failure and adapt to evolving conditions.

20



shortridge@hachyderm.io | @swagitda_

We can imbibe the Resilience Potion to help us 
on our journey to sustain software resilience…
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The Resilience 
Potion



shortridge@hachyderm.io | @swagitda_

There are five ingredients to sustain resilience…
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Define the system’s 
critical functions
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Define the system’s 
safe boundaries
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Observe system 
interactions across 

spacetime
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Feedback loops and a 
learning culture
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Flexibility and 
willingness to change

28



shortridge@hachyderm.io | @swagitda_

How can we brew this potion when we develop 
and deliver software? Opportunities abound…
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I. Critical 
Functionality
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Our aim is simplicity and understandability of 
critical functions when we develop code
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The Airlock Approach
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During dev, we need to define what we can 
“throw out of the airlock.”
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What parts would you like to be able to neglect 
during an incident?
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If a non-critical component is compromised, the 
airlock approach allows you to shut it off
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If processing transactions is your critical 
function, throw reporting “out the airlock”
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Choose “boring” tech
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Dan McKinley: boring is not inherently bad; it 
likely indicates well-understood capabilities
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The end user doesn’t care if HackerNews thinks 
you did something super cool
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End users want to use your service whenever 
they want, as quickly as they want, and with the 
functionality they want.
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Sometimes solving business problems does 
require fancy tech as a market differentiator
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P.S. attackers love when devs adopt tools that 
aren’t well understood yet….
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Optimize for the “least-worst” tools for as many 
non-differentiator problems as you can
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Standardizing raw materials
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“Raw materials” in software systems: languages, 
libraries, and tooling
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Yes, we’re going to talk about memory safety, 
the hottest software quality trend for S/S 2023
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Memory safety: memory resource management 
is handled by the language and runtime itself
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We can think of C code like lead; convenient, 
but it’s poisoning us over time as it accumulates
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YOYD + YEET: You own our dependencies 
(YOYD) so yeet the hazardous ones away
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<(curl –s https://stinkytool.io/bash)

You can feel its radioactive heat from here.
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General principle: consider the n-order effects 
of raw materials when developing & delivering
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Data can also be a hazardous material; we can 
and should isolate access to sensitive data
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II. Expanding 
Safety Boundaries
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We should understand the system’s safety 
boundaries – but we can also expand them
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Rather than relying on everything being perfect 
pre-deploy, we can cope well with mistakes
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A lot of getting security “right” is just solid 
engineering. Security is a facet of quality.
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Anticipating scale
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How might operating conditions evolve? 
Where do the system’s safety boundaries lie?
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Challenging our “this will always be true” 
assumptions can expose scalability issues
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“On every incoming request, we first need to 
correlate it with the user’s prior shopping cart 
– which means making a query to this other 
thing.”
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We must anticipate what ops / SRE will need 
when responding to incidents
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Attackers also target our “this will always be 
true” assumptions that exist all over our stack.
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Parsing this string 
will always be fast
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Messages on this 
port will always be 
post-authentication
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An alert will always fire if a 
malicious executable appears
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Standardizing patterns and tools
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Standardization: ensuring work produced is 
consistent with preset guidelines
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Prioritize patterns for parts of the system with 
the biggest security implications
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Hazardous methods can look like roll-your-own: 
crypto, database, logging pipeline, etc.
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SQLi can be characterized as the result of 
rolling your own database query builder
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Give teams a list of well-vetted libraries & 
service providers they should choose from
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Paved roads: well-integrated, supported 
solutions to common problems that allow 
humans to focus on their unique value creation
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Understanding dependencies
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Understand faults in our tools so we can fix or 
mitigate them – or even consider better tools
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When should you care about a security vuln?
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1. How easy is the attack to automate & scale?
2. How many steps away is the attack from the 

attacker’s goal outcome?
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III. Observing 
System Interactions 

across Spacetime
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We must observe how our systems’ behaviors 
unfold over time and across their topology
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We can also make interactions more linear –
curtailing the number of “baffling” interactions
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Testing
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Are we testing for resilience or quality over 
time, or just to say that we did testing?
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The tests we write are an artifact of our mental 
models at a certain point in spacetime
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Prioritize tests that refine our mental models 
and can adapt as system context evolves
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Integration tests can be a valuable first pass at 
uncovering “baffling” interactions
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The AttachMe vuln is an example of what we 
hope to uncover with integration tests
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Integration tests for attaching a disk to a VM in 
another account, spikes in resource nom nom…
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A single input in one component is insufficient 
for reproducing catastrophic failures in tests
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(Security) chaos experiments
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Our goal is to uncover “baffling interactions” in 
our systems that defy our expectations.
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We can do so through chaos experiments: 
resilience stress tests for software systems.
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Chaos experiments help us more quickly learn 
about system behavior and its context.
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Example: critical services need to authenticate 
incoming traffic – but consistent auth is hard
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Create an experiment for evidence of which 
services automatically require authN
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“In the event of unauthenticated traffic, we 
expect our service endpoints will respond with 
an authentication challenge.”
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Is our org’s chosen authN middleware present 
in everything we deploy? Collect evidence!
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Hypothesis proven incorrect: authN is not 
validated properly everywhere + no alerts
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Evidence informs design changes to our 
middleware and observability pipelines
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But more questions remain: were there other 
failures associated with this scenario? Did we 
receive alerts elsewhere? Any reported issues?
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IV. Feedback Loops 
and Learning
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We must learn from system behavior during 
adverse events and use it to inform change
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We need ways to summon, preserve, and learn 
from these memories for a feedback loop
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Distributed tracing
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It’s difficult to look at breadcrumbs left by the 
system that aren’t brought together in a story
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You can’t form a feedback loop without being 
able to see what’s going on over time.
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We should plan for and build this feedback into 
our services through tracing and logging.
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Distributed tracing lets us observe the flow of 
data as it pours through a distributed system
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We can assign a trace ID at the point of traffic 
ingress and follow the event as it flows through
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Case study: an attacker exfiltrating data from a 
hospital’s patient portal

114



shortridge@hachyderm.io | @swagitda_115

Patient 
Portal 
service

Token service

Labs service

Schedule 
service

Frontend

In-house Labs 
service

Partner’s Lab 
Report integration 

service

User



shortridge@hachyderm.io | @swagitda_

How do we trace the data flows from all the 
requests from the Labs service and beyond?
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Distributed tracing dissipates this nightmare by 
assigning a trace ID at the traffic ingress point
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Distributed tracing also helps us refine system 
design and design new, better versions
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We need to understand the impact a potential 
design change has on our tree of consumers
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Dist tracing helps us refine that mental model 
by learning about real interactions in the system
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It makes the statement that we want to correlate 
data across systems – that we want that trace ID
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V. Flexibility and 
Willingness to 

Change
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We must remain flexible in the face of failures 
and evolving conditions
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Nature is a patient architect, allowing evolution 
to bloom over generational cycles
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We need strategies that promote the speed on 
which our graceful adaptability depends
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Preserving possibilities for refactoring
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No one thinks about the remake when they film 
the original – same with code and refactoring
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We must anticipate that code will change and 
make decisions that support flexibility to do so
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We need an easy path to safely restructure 
abstractions, data models, and approaches
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Type systems are often thought of as a way to 
resist change, but they can facilitate change
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Type declarations can help us preserve 
possibilities when developing code
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A type is a set of requirements declaring what 
operations can be performed on values that are 
considered to conform to the type.
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Static typing can make it easier to refactor since 
type errors help guide the migration. 
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If we pass around Int64s to represent a time-
stamp, then call them “Timestamp” for clarity
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The more clarity we can crystallize around the 
system’s functions, the more we can adapt
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Modularity
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Engineers fundamentally misunderstand 
modularity with respect to resilience
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So many interactions can subvert boundaries
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Modularity allows “structurally or functionally 
distinct parts to retain autonomy during a 
period of stress and allows for easier recovery.”
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Modularity is a system property reflecting the 
degree to which components can be decoupled
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Humans have intuitively grasped how 
modularity supports resilience for millenia
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During a disturbance, a modular feature can 
function independently of other features
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When there’s low modularity, failure cascades 
pervade – it enables contagion effects 
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Ransomware’s success relies on low modularity
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A system with high modularity can contain or 
“buffer” stressors and surprises
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Modules create a local boundary for isolation
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Isolation is a core property that supports 
software and systems resilience
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In software, we’re lucky that we can isolate 
failure to handle unexpected interactions
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Start “boring”: set AWS security groups – or 
use serverless functions, containers, or VMs 
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RLBox: trap C code in a WebAssembly (Wasm) 
sandbox to isolate hazardous subcomponents
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If a vulnerable component is in a sandbox, the 
attacker faces a challenge to reach their goal
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Modularity makes navigating and updating the 
system easier, too
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Chaos experiments show us to what extent our 
modular boundaries are useful for resilience
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Strangler Fig
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How can we change our system without 
contaminating critical functionality?
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The Strangler Fig pattern supports our capacity 
to change and helps us maintain flexibility
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Stranger Fig is the conservative approach – but 
usually also the faster and sustainable one
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We also need to transform the socio part; 
humans’ mental models are often sticky.

161



shortridge@hachyderm.io | @swagitda_

The new principles and practices we adopt 
when changing need incremental iteration, too

162



Savoring our Potion
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Resilience means organizations respond to 
failure & adapt to evolving conditions with grace
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We can foster the five key ingredients we need 
to brew the Resilience Potion during dev
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We can define our critical functions and 
prioritize preserving them in adverse conditions
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We can understand and expand our system’s 
boundaries of safe operation

167



shortridge@hachyderm.io | @swagitda_

We can observe system interactions across 
space-time and make them more understandable
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We can foster feedback loops, ensuring we learn 
about our systems quickly to inform change
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And we can remain flexible in the face of failures 
and evolving conditions, ever poised to change
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Order the book today:
Amazon
Bookshop
& other major retailers

171

https://www.amazon.com/Security-Chaos-Engineering-Developing-Resilience/dp/1098113829
https://bookshop.org/p/books/security-chaos-engineering-developing-resilience-and-safety-at-speed-and-scale-aaron-rinehart/18793471?ean=9781098113827
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/in/kellyshortridge

@swagitda_

@shortridge.bsky.social
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shortridge@hachyderm.io

chat@shortridge.io
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