Going Beyond Data
Parallelism




The adventures ahead!”

Meeting the "narrator"**

What is Data Parallelism & When is it not enough
A detour to Appendix A from my Ray book

My side quest: to promote my books

My employers (probable) goal: make you interested in Netflix data
engineering




Who am [|?

Pronouns are she/her

Apache Spark PMC (think committer with tenure)

previously Apple, IBM, Alpine, Databricks, Google, Foursquare & Amazon
co-author of High Performance Spark, Learning Spark, Kubeflow for
Machine Learning + in progress Scaling Python with Dask and Scaling
Python with Ray

Twitter: @holdenkarau

Livestreams: https://youtube.com/user/holdenkarau

Github https://github.com/holdenk

Currently at Netflix (my org is hiring) - but any mistakes are my own



https://twitter.com/holdenkarau
https://youtube.com/user/holdenkarau
https://github.com/holdenk
https://jobs.netflix.com/team?slug=data-platform




Probable (relevant) Biases

I'm used to working with large scale datasets

I've mostly worked at the platform level for the past decade

I'm a Spark committer and I've written some of it

| have contributed code to Ray and Dask but much less

I've written books on Spark and am writing books on Ray and Dask
| think functional programming is cool



Quick Refresher on Data Parallelism

e Split up the date into partitions
e Most of the time: apply the same logic to each partition
e Sometimes: re-combine the partitions in some way

e Or see: Distributed Computing 4 Kids



When is this not enough?

Tracking state & weights during ML models (current top of mind)
Smaller tasks

Non-uniform tasks

etc.




What are some options?

Local:

e Joblib, multiprocessing
e Locks + Shared memory

Distributed:
e Tasks
e Actors
e Locks + shared memory
e DB



Why this is hard:

"A distributed system is one in which the failure of a computer you didn't even
know existed can render your own computer unusable™ — Leslie lamport




What do (distributed) tasks look like?

tl:dr — Functions with decorators
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Dask Distributed Tasks

@dask.delayed

def remote_hi():

import os
import socket

return f"Running on {socket.gethostname()} in pid
{os.getpid()}"



Ray Distributed Tasks

@ray.remote

def remote_hi():

import os
import socket

return f"Running on {socket.gethostname()} in pid
{os.getpid()}"



How are they different?

Dask Delayed Ray Remote
e Default* to lazy e Default to eager
e C(Centralized™ scheduler (futures)

e Distributed* scheduler



How are they same?

Distributed & Local Scheduler options
Chainable

Recursive*

Low (but non-zero) overhead

Futures available

etc.



Task Fault tolerance

e Restart on failure
e Yes this can have some "unintended" side effects



And we can (sort of) make the Distributed look local

e https://docs.ray.io/en/latest/ray-more-libs/joblib.html
e https://ml.dask.org/joblib.html

And same for multiprocessing etc.



https://docs.ray.io/en/latest/ray-more-libs/joblib.html
https://ml.dask.org/joblib.html

Does Spark have tasks?

Yes... but not exposed



And Actors?

Think like tasks + restrictions to make handling state "easier."
Communicate with message passing

Encapsulate state




Neat! What does it look like?

class SatelliteClientBase():

LRI

Base client class for talking to the swarm.space APIs.

def __init__ (self, settings: Settings, idx: int, poolsize: int):

# Annoying setup work goes here
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async def run(self):
# Is it there yet?
print("Prepairing to run.")
self.running = True
while self.running:
try:
self._login()
while True:
await asyncio.sleep(self.delay)
await self.check _msgs()
except Exception as e:
print(f"Error {e} while checking messages.")

logging.error(f"Error {e}, retrying")



async def send_message(self, protocol: int, msg_from: str, msg_to:

messagedata = MessageDataPB() # noga
messagedata.from_device = False
message = messagedata.message.add()
message.text = data
message.protocol = protocol
message.to = msg_from
encoded = base64.b64encode(messagedata.SerializeToString())
request_dict = {
"deviceType": O,
"deviceId": msg_to,
"userApplicationId": 1000,

"data": encoded

request_encoded = json.dumps(request_dict)

return self.session.post(
self._sendMessageURL,
data=request_encoded,

headers=self._sendMessageHeaders

int, data:

str):



# This is the magic that makes it an actor :D (We separate this out so we can test a non-actor version too).
@ray.remote(max_restarts=-1)
class SatelliteClient(SatelliteClientBase):

Connects to swarm.space API.



Other stuff

" UserDB
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Ray Other stuff
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Oook what happens if it gets "busy"?

e \Well... unlikely given our project
e Actor pools give us what we want, but initialization order
e Routing the messages becomes complicated
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Ray Actor Fault tolerance

Mark them as restartable, but you need to write the recovery code.

There is no magic here (except maybe a database).



So... code?

https://qithub.com/PigsCanFlyLabs/messaqge-backend-ray

+

https://qithub.com/scalingpythonml/scalingpythonml



https://github.com/PigsCanFlyLabs/message-backend-ray
https://github.com/scalingpythonml/scalingpythonml

Ok ok fine. What's up with Ray + Netflix?

e \We train models with Ray :D

e No we don't make Satellite Communication backends :p

e See
https://netflixtechblog.com/scaling-media-machine-learning-at-netflix-f19b400
243



https://netflixtechblog.com/scaling-media-machine-learning-at-netflix-f19b400243
https://netflixtechblog.com/scaling-media-machine-learning-at-netflix-f19b400243

Dask Actor Fault tolerance

Hopes and dreams



Does Spark have Actors?

No



A word from my employer:

We are actively hiring for the Data Platform organization (remote and in person)

| don't think it's my specific team, but it's on our sister teams :)

As well as DSE etc (w/ remote US roles)



https://jobs.netflix.com/teams/data-platform

But most importantly....

Buy several copies of my books :p (or read them on safari, | think | get money

from that?)
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https://distributedcomputing4kids.com

