
Going Beyond Data 
Parallelism



The adventures ahead!*

● Meeting the "narrator"**
● What is Data Parallelism & When is it not enough
● A detour to Appendix A from my Ray book
● My side quest: to promote my books
● My employers (probable) goal: make you interested in Netflix data 

engineering



Who am I?
● Pronouns are she/her
● Apache Spark PMC (think committer with tenure)
● previously Apple, IBM, Alpine, Databricks, Google, Foursquare & Amazon
● co-author of  High Performance Spark, Learning Spark, Kubeflow for 

Machine Learning + in progress Scaling Python with Dask and Scaling 
Python with Ray

● Twitter: @holdenkarau
● Livestreams: https://youtube.com/user/holdenkarau 
● Github https://github.com/holdenk 
● Currently at Netflix (my org is hiring) - but any mistakes are my own

https://twitter.com/holdenkarau
https://youtube.com/user/holdenkarau
https://github.com/holdenk
https://jobs.netflix.com/team?slug=data-platform




Probable (relevant) Biases

● I'm used to working with large scale datasets
● I've mostly worked at the platform level for the past decade
● I'm a Spark committer and I've written some of it
● I have contributed code to Ray and Dask but much less
● I've written books on Spark and am writing books on Ray and Dask
● I think functional programming is cool



Quick Refresher on Data Parallelism

● Split up the date into partitions
● Most of the time: apply the same logic to each partition
● Sometimes: re-combine the partitions in some way

● Or see: Distributed Computing 4 Kids



When is this not enough?

● Tracking state & weights during ML models (current top of mind)
● Smaller tasks
● Non-uniform tasks 
● etc.



What are some options?

Local:

● Joblib, multiprocessing
● Locks + Shared memory

Distributed:

● Tasks
● Actors
● Locks + shared memory
● DB



Why this is hard:

"A distributed system is one in which the failure of a computer you didn't even 
know existed can render your own computer unusable'" – Leslie lamport



What do (distributed) tasks look like?

tl;dr – Functions with decorators



Dask Distributed Tasks

@dask.delayed

def remote_hi():

    import os

    import socket

    return f"Running on {socket.gethostname()} in pid 

{os.getpid()}"



Ray Distributed Tasks

@ray.remote

def remote_hi():

    import os

    import socket

    return f"Running on {socket.gethostname()} in pid 

{os.getpid()}"



How are they different?

Dask Delayed

● Default* to lazy
● Centralized* scheduler

Ray Remote

● Default to eager 
(futures)

● Distributed* scheduler



How are they same?

● Distributed & Local Scheduler options
● Chainable
● Recursive*
● Low (but non-zero) overhead
● Futures available
● etc.



Task Fault tolerance

● Restart on failure
● Yes this can have some "unintended" side effects



And we can (sort of) make the Distributed look local

● https://docs.ray.io/en/latest/ray-more-libs/joblib.html
● https://ml.dask.org/joblib.html 

And same for multiprocessing etc.

https://docs.ray.io/en/latest/ray-more-libs/joblib.html
https://ml.dask.org/joblib.html


Does Spark have tasks?

Yes… but not exposed



And Actors?

Think like tasks + restrictions to make handling state "easier."

Communicate with message passing

Encapsulate state



Neat! What does it look like?
class SatelliteClientBase():

    """

    Base client class for talking to the swarm.space APIs.

    """

    def __init__(self, settings: Settings, idx: int, poolsize: int):

        # Annoying setup work goes here



    async def run(self):

        # Is it there yet?

        print("Prepairing to run.")

        self.running = True

        while self.running:

            try:

                self._login()

                while True:

                    await asyncio.sleep(self.delay)

                    await self.check_msgs()

            except Exception as e:

                print(f"Error {e} while checking messages.")

                logging.error(f"Error {e}, retrying")



   async def send_message(self, protocol: int, msg_from: str, msg_to: int, data: str):

        messagedata = MessageDataPB()  # noqa

        messagedata.from_device = False

        message = messagedata.message.add()

        message.text = data

        message.protocol = protocol

        message.to = msg_from

        encoded = base64.b64encode(messagedata.SerializeToString())

        request_dict = {

            "deviceType": 0,

            "deviceId": msg_to,

            "userApplicationId": 1000,

            "data": encoded

        }

        request_encoded = json.dumps(request_dict)

        return self.session.post(

            self._sendMessageURL,

            data=request_encoded,

            headers=self._sendMessageHeaders



# This is the magic that makes it an actor :D (We separate this out so we can test a non-actor version too).

@ray.remote(max_restarts=-1)

class SatelliteClient(SatelliteClientBase):

    """

    Connects to swarm.space API.

    """
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Oook what happens if it gets "busy"?

● Well… unlikely given our project
● Actor pools give us what we want, but initialization order
● Routing the messages becomes complicated
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Ray Actor Fault tolerance

Mark them as restartable, but you need to write the recovery code.

There is no magic here (except maybe a database).



So… code?

https://github.com/PigsCanFlyLabs/message-backend-ray 

+

https://github.com/scalingpythonml/scalingpythonml 

https://github.com/PigsCanFlyLabs/message-backend-ray
https://github.com/scalingpythonml/scalingpythonml


Ok ok fine. What's up with Ray + Netflix?

● We train models with Ray :D
● No we don't make Satellite Communication backends :p
● See 

https://netflixtechblog.com/scaling-media-machine-learning-at-netflix-f19b400
243

https://netflixtechblog.com/scaling-media-machine-learning-at-netflix-f19b400243
https://netflixtechblog.com/scaling-media-machine-learning-at-netflix-f19b400243


Dask Actor Fault tolerance

Hopes and dreams



Does Spark have Actors?

No



A word from my employer:

We are actively hiring for the Data Platform organization (remote and in person)

I don't think it's my specific team, but it's on our sister teams :)

https://jobs.netflix.com/teams/data-platform
As well as DSE etc (w/ remote US roles)

https://jobs.netflix.com/teams/data-platform


But most importantly….

Buy several copies of my books :p (or read them on safari, I think I get money 
from that?)

https://amzn.to/3OyVuZa
https://amzn.to/3OyVuZa
https://amzn.to/3OyVuZa


https://distributedcomputing4kids.com

https://distributedcomputing4kids.com

