
Going Beyond Data
Parallelism

The adventures ahead!*

● Meeting the "narrator"**
● What is Data Parallelism & When is it not enough
● A detour to Appendix A from my Ray book
● My side quest: to promote my books
● My employers (probable) goal: make you interested in Netflix data

engineering

Who am I?
● Pronouns are she/her
● Apache Spark PMC (think committer with tenure)
● previously Apple, IBM, Alpine, Databricks, Google, Foursquare & Amazon
● co-author of High Performance Spark, Learning Spark, Kubeflow for

Machine Learning + in progress Scaling Python with Dask and Scaling
Python with Ray

● Twitter: @holdenkarau
● Livestreams: https://youtube.com/user/holdenkarau
● Github https://github.com/holdenk
● Currently at Netflix (my org is hiring) - but any mistakes are my own

https://twitter.com/holdenkarau
https://youtube.com/user/holdenkarau
https://github.com/holdenk
https://jobs.netflix.com/team?slug=data-platform

Probable (relevant) Biases

● I'm used to working with large scale datasets
● I've mostly worked at the platform level for the past decade
● I'm a Spark committer and I've written some of it
● I have contributed code to Ray and Dask but much less
● I've written books on Spark and am writing books on Ray and Dask
● I think functional programming is cool

Quick Refresher on Data Parallelism

● Split up the date into partitions
● Most of the time: apply the same logic to each partition
● Sometimes: re-combine the partitions in some way

● Or see: Distributed Computing 4 Kids

When is this not enough?

● Tracking state & weights during ML models (current top of mind)
● Smaller tasks
● Non-uniform tasks
● etc.

What are some options?

Local:

● Joblib, multiprocessing
● Locks + Shared memory

Distributed:

● Tasks
● Actors
● Locks + shared memory
● DB

Why this is hard:

"A distributed system is one in which the failure of a computer you didn't even
know existed can render your own computer unusable'" – Leslie lamport

What do (distributed) tasks look like?

tl;dr – Functions with decorators

Dask Distributed Tasks

@dask.delayed

def remote_hi():

 import os

 import socket

 return f"Running on {socket.gethostname()} in pid

{os.getpid()}"

Ray Distributed Tasks

@ray.remote

def remote_hi():

 import os

 import socket

 return f"Running on {socket.gethostname()} in pid

{os.getpid()}"

How are they different?

Dask Delayed

● Default* to lazy
● Centralized* scheduler

Ray Remote

● Default to eager
(futures)

● Distributed* scheduler

How are they same?

● Distributed & Local Scheduler options
● Chainable
● Recursive*
● Low (but non-zero) overhead
● Futures available
● etc.

Task Fault tolerance

● Restart on failure
● Yes this can have some "unintended" side effects

And we can (sort of) make the Distributed look local

● https://docs.ray.io/en/latest/ray-more-libs/joblib.html
● https://ml.dask.org/joblib.html

And same for multiprocessing etc.

https://docs.ray.io/en/latest/ray-more-libs/joblib.html
https://ml.dask.org/joblib.html

Does Spark have tasks?

Yes… but not exposed

And Actors?

Think like tasks + restrictions to make handling state "easier."

Communicate with message passing

Encapsulate state

Neat! What does it look like?
class SatelliteClientBase():

 """

 Base client class for talking to the swarm.space APIs.

 """

 def __init__(self, settings: Settings, idx: int, poolsize: int):

 # Annoying setup work goes here

 async def run(self):

 # Is it there yet?

 print("Prepairing to run.")

 self.running = True

 while self.running:

 try:

 self._login()

 while True:

 await asyncio.sleep(self.delay)

 await self.check_msgs()

 except Exception as e:

 print(f"Error {e} while checking messages.")

 logging.error(f"Error {e}, retrying")

 async def send_message(self, protocol: int, msg_from: str, msg_to: int, data: str):

 messagedata = MessageDataPB() # noqa

 messagedata.from_device = False

 message = messagedata.message.add()

 message.text = data

 message.protocol = protocol

 message.to = msg_from

 encoded = base64.b64encode(messagedata.SerializeToString())

 request_dict = {

 "deviceType": 0,

 "deviceId": msg_to,

 "userApplicationId": 1000,

 "data": encoded

 }

 request_encoded = json.dumps(request_dict)

 return self.session.post(

 self._sendMessageURL,

 data=request_encoded,

 headers=self._sendMessageHeaders

This is the magic that makes it an actor :D (We separate this out so we can test a non-actor version too).

@ray.remote(max_restarts=-1)

class SatelliteClient(SatelliteClientBase):

 """

 Connects to swarm.space API.

 """

MailServer
Actors

User Actors

Satellite
Actors

Mail Client
Remote

UserDB

swarm.space

Website

Satelites

User Device

Ray Other stuff

SMS
Actors

SMS
Serve

Oook what happens if it gets "busy"?

● Well… unlikely given our project
● Actor pools give us what we want, but initialization order
● Routing the messages becomes complicated

swarm.spaceSMTP Relay

metallb

Internal
(k8s)

External
Router

MailServer
Actor #1

MailServer
Actor #2

User Actor
#1

User Actor
#2

Satellite
Actor
#1

Satellite
Actor
#2

Mail Client

UserDB

Ray Actor Fault tolerance

Mark them as restartable, but you need to write the recovery code.

There is no magic here (except maybe a database).

So… code?

https://github.com/PigsCanFlyLabs/message-backend-ray

+

https://github.com/scalingpythonml/scalingpythonml

https://github.com/PigsCanFlyLabs/message-backend-ray
https://github.com/scalingpythonml/scalingpythonml

Ok ok fine. What's up with Ray + Netflix?

● We train models with Ray :D
● No we don't make Satellite Communication backends :p
● See

https://netflixtechblog.com/scaling-media-machine-learning-at-netflix-f19b400
243

https://netflixtechblog.com/scaling-media-machine-learning-at-netflix-f19b400243
https://netflixtechblog.com/scaling-media-machine-learning-at-netflix-f19b400243

Dask Actor Fault tolerance

Hopes and dreams

Does Spark have Actors?

No

A word from my employer:

We are actively hiring for the Data Platform organization (remote and in person)

I don't think it's my specific team, but it's on our sister teams :)

https://jobs.netflix.com/teams/data-platform
As well as DSE etc (w/ remote US roles)

https://jobs.netflix.com/teams/data-platform

But most importantly….

Buy several copies of my books :p (or read them on safari, I think I get money
from that?)

https://amzn.to/3OyVuZa
https://amzn.to/3OyVuZa
https://amzn.to/3OyVuZa

https://distributedcomputing4kids.com

https://distributedcomputing4kids.com

