

GOTO CHICAGO 2023

A Composer's Guide to Creating with Generative NNs

Molly Jones

Build smarter software.

We're on a mission to build impactful and high-quality software for exceptional clients.

My Practice

My Practice

Shannon's Entropy

What you're going to see

in this presentation

- the technical side of creating a proof-of-concept composition
- an artist training a neural network
- data challenges
- infrastructure challenges
- ethical quandaries

What you're not

going to see

- pre-trained, proprietary models
- prompt engineering
- nonconsensual data use
- beautiful code

Outline

- 1. Background and Goals
- 2. Data Collection
- 3. Model Selection
- 4. Infrastructure
- 5. Development
- 6. Deciding When It's Done
- 7. Composition
- 8. Future Directions

1. Background + Goals

approximations

a piece for accordion, percussion, and neural networks

approximations - May 19, 2023

WOLFGANG AMADEUS MOZART

Musikalisches Würfelspiel

Table of Measure Numbers

Part One

Part Two

		**						
2	96	22	141	41	105	122	11	30
3	32	6	128	63	146	46	134	81
4	69	95	158	13	153	55	110	24
5	40	17	113	85	161	2	159	100
6	148	74	163	45	80	97	36	107
7	104	157	27	167	154	68	118	91
8	152	60	171	53	99	133	21	127
9	119	84	114	50	140	86	169	94
10	98	142	42	156	75	129	62	123
11	3	87	165	61	135	47	147	33
12	54	130	10	103	28	37	106	5

2	70	121	26	9	112	49	109	14
3	117	39	126	56	174	18	116	83
4	66	139	15	132	73	58	145	79
5	90	176	7	34	67	160	52	170
6	25	143	64	125	76	136	1	93
7	138	71	150	29	101	162	23	151
8	16	155	57	175	43	168	89	172
9	120	88	48	166	51	115	72	111
10	65	77	19	82	137	38	149	8
11	102	4	31	164	144	59	173	78
12	35	20	108	92	12	124	44	131

Table of Measures

TIMBRE

Tuning fork

Flute

1.00

Voice

Guitar

- Andre Andr

-1/10

Two Stories of Confusion

Incorrect Assumption #1: artists != engineers

Incorrect Assumption #2: proprietary models are better

2. Data Collection

Ethical Quandary: data provenance

Louis Pino + Matti Pulkki

Challenge: data volume

Training Data

Percussion
Accordion

Challenge: multi-modal data

Challenge: network too clever

3. Model Selection

"I started with a literature search. I pulled papers on adversarial audio synthesis and a variety of techniques for generation, including some published since January 2021 when I first started playing around with audio generative networks. I did a deep read of the Wavenet paper, and then I realized I may as well start with the structures I already know since I'm unlikely to have time to do a full review of the entire field."

-journal, 10/20/2022

- WaveNet
- DanceDiffusion
- GANSynth
- WaveGAN
- MelNet
- AudioSinGAN

- SampleRNN
- StrawNet (variant of WaveNet)
- RAVE
- Catch A Waveform
- DDSP

- WaveNet (2016)
- DanceDiffusion (2022)

Challenge: lack of time

Challenge: technical debt

2.1 DILATED CAUSAL CONVOLUTIONS

Figure 2: Visualization of a stack of causal convolutional layers.

Wavenet Architecture

Wavenet Architecture

Wavenet Architecture

DanceDiffusion

Generative Reverse Denoising Process

4. Infrastructure

Cloud VMs

- old converted TF + GPUs = hard
- Linux OOM killer = frustrating
- budget limitations = real
- cost structure = stressful + inexact

Cloud VMs

Challenge: MLOps

5. Development

В	С	D	E	F	G	н	1	J	к	L	м	N	0	Р
Model	Performe	Data Augmentation	Audio length	Sample rate	Training Steps	Filter width	Initial filter width	Learning rate	Sample Size	Silence Threshold	L2 Strength	Momentum	Loss Behavior	Next Steps
Wavenet (Ibab)	Pino	Trimmed silence, double compressed (Audacity), time shifted, pitch shifted	4.5 hrs	combo 44100 and 22050; set as 22050 in wavenet_params	100,000	2	32	1.00E-04	100,000	0.1	0	0.9	vascillates anywhere from 0.2 up to 4.8	resample the one file to 22050 // triple the amount of audio in there through more augmentation // change sample_size to be one second of audio (22050 samples)
Wavenet (Ibab)	Pino	added Oct resampled to 22050 plus time/pitch shifted versions of Oct	8.25 hrs	22050	100,000	2	32	1.00E-04	22050	0.1	0	0.9	drops to 1.4-3.4 and then vascillates	Will try dropping the learning rate; if this doesn't help, may try increasing the number of training steps OR may try processing Matti's audio and seeing what difference that makes
Wavenet (Ibab)	Pino	added Oct resampled to 22050 plus time/pitch shifted versions of Oct	8.25 hrs	22050	100,000	2	32	1.00E-05	22050	0.1	0	0.9	vascillates more widely between 0.9 and 5	Don't think that will get better with higher # of training steps; will try increasing the sample size
Wavenet (Ibab)	Pino	added Oct resampled to 22050 plus time/pitch shifted versions of Oct	8.25 hrs	22050	100,000	2	32	1.00E-04	250000	0.1	0	0.9	N/A	ran out of memory almost immediately
Wavenet (Ibab)	Pino	added Oct resampled to 22050 plus time/pitch shifted versions of Oct	8.25 hrs	22050	100,000	2	32	1.00E-07	100000	0.1	0	0.9	vascillates between 3 and 5.5	
Wayenet (]hah)	Matti	silence-removed, plus time and pitch shifted versions	8.25 brs	22050	100.000	2	12	100E-04	100000	01	0	09	Ughl It seems to have been converging consistently, loss was down to consistently around 2.0-2.1, and then it was killed for some reason. And when I restarted it with the logdin to continue training, loss went back to vacillating amon 3 and 4.4	2 1 7

Wavenet Architecture

Tunable Hyperparameters

- filter width = 2
- learning rate = 0.0001
- sample size / analysis window size = 50,000
- silence threshold = 0.1
- dilation channels = 32
- skip channels = 1024
- dilation layer structure...

Tunable Hyperparameters

{

}

"filter_width": 2, "sample_rate": 16000, "dilations": [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512], "residual_channels": 32, "dilation_channels": 32, "quantization_channels": 256, "skip channels": 1024, "use biases": true, "scalar_input": false, "initial_filter_width": 32

Challenge: iteration speed

Challenge: cost

Infrastructure Budget

\$1,831.65

Infrastructure Costs*

*plus ~\$22 for coffee with knowledgeable ppl

Developer / Artist Hours

6. When is it done?

STFT (short time Fourier transform)

Accordion Sounds

+0 dB

--10 dB

--20 dB

--30 dB

--40 dB

--50 dB

- -60 dB

--70 dB

-80 dB

Accordion Sounds

+0 dB

--10 dB

--20 dB

--30 dB

--40 dB

--50 dB

-60 dB

--70 dB

-80 dB

Accordion Sounds

Percussion Sounds

Percussion Sounds

1.1 1.2

Percussion Sounds

•

~1 month

Training Time

7. Composition

```
import os
import numpy as np
import soundfile as sf
from common.load_audio import load_audio_file
from common.grains import make_one_grain, make_one_repitched_grain, repeat_grain
def grain_hold(
    audio_dir, filename, tempo, length, write_out=False, output_file_name=None
    audio_data, sr, filelength = load_audio_file(audio_dir, filename)
    original_audio_data = audio_data.tolist()
    pulse_audio = []
    grain_length = (
        round(1 / tempo * sr) if filelength > round(1 / tempo * sr) else filelength
    print(grain_length)
    grain_to_repeat = make_one_grain(grain_length, original_audio_data, sr)
    while len(pulse_audio) < length * sr:</pre>
        pulse_audio.extend(grain_to_repeat)
    if write_out:
        audio_output_path = os.path.join("generated", "held_grain", output_file_name)
        sf.write(audio_output_path, pulse_audio, sr, subtype="PCM_24")
        print("Saved held grain audio file to /pulse!")
    return pulse_audio, sr
def short_pulse(
    audio_dir, filename, tempo, length, write_out=False, output_file_name=None
    audio_data, sr, filelength = load_audio_file(audio_dir, filename)
```

```
def accordion salad(
   audio_dir, length=10, max_length=1, write_out=False, output_file_name=None
   num_audio_files, buffer_objs = load_audio_dir(audio_dir)
   initial_sample_rate = buffer_objs[0]["sample_rate"]
   salad_left = []
   salad_right = []
   while len(salad_left) < length * initial_sample_rate:</pre>
       selected_file = np.random.randint(num_audio_files)
       audio_data = buffer_objs[selected_file]["data"]
       sr = buffer_objs[selected_file]["sample_rate"]
       minimum_grain_length = (
           sr * 0.5 if len(audio_data) > sr * 0.5 else len(audio_data) * 0.5
       grain_length_left = (
           np.random.randint(minimum_grain_length, sr * 1.5 * max_length)
           if len(audio_data) > sr * 1.5 * max_length
           else np.random.randint(minimum_grain_length, len(audio_data))
       grain_length_right = (
           np.random.randint(minimum_grain_length, sr * 1.5 * max_length)
           if len(audio_data) > sr * 1.5 * max_length
           else np.random.randint(minimum_grain_length, len(audio_data))
       # silence random grains
       grain_to_silence = np.random.choice([0, 1, 2], 1, p=[0.9, 0.05, 0.05])
       if grain_to_silence == 0:
           grain1 = make_one_repitched_grain(grain_length_left, audio_data, sr)
           grain2 = make_one_repitched_grain(grain_length_right, audio_data, sr)
       elif grain_to_silence == 1:
```

grain1 = [0.0] * grain_length_left

grain2 = make_one_repitched_grain(grain_length_right, audio_data, sr)
lse:

grain1 = make_one_repitched_grain(grain_length_left, audio_data, sr)
grain2 = [0.0] * grain_length_right

extract harmonic components of some of the grains if np.random.choice([0, 1], 1, p=[0.85, 0.15]) == 0:

Ethical Quandary: composer / performer relationship

Molly Jones

mov't i

approximations

for Accordion, Vibraphone, Bass Drum, + Fixed Media

11:38

April 2023 © Copyright 2023 Molly Jones

mov't i - from the fog of randomness	3:22
mov't ii - making friends with the robots	1:55
mov't iii - call + response	1:14
mov't iv - mutual listening	3:00
mov't v - educated guessing	1:05

approximations - May 19, 2023

8. Future Directions

Next Steps

• other network structures

Next Steps

- other network structures
- TensorFlow -> PyTorch?
Next Steps

- other network structures
- TensorFlow -> PyTorch?
- audio data augmentation

Next Steps

- other network structures
- TensorFlow -> PyTorch?
- audio data augmentation
- buy a GPU!

Next Steps

- Chicago Creative Machines
- Synthetic Prairie

Challenges:

• data

• volume

o quality

Challenges:

• data

• volume

quality

• time

- o skill (years)
- development(hours)
- iteration speed

Challenges:

• data

• volume

quality

• time

- o skill (years)
- development(hours)
- iteration speed

• cost

Ethical Quandary: artist / Al symbiosis

Creative Exercise

Gratitude

- Igor Babuschkin
- Zach Evans and Harmonai

- Ethan Manilow
- Alice Li
- Mansi Shah

Questions? Comments?

mojones.e@gmail.com

S/P/A/N

Don't forget to vote for this session in the GOTO Guide app

Appendix: Vocabulary

stochastic

involving chance, randomness, or probability

neural network

definition from **IBM**

timbre

the quality or tone distinctive of a particular singing voice or musical instrument

(from Merriam-Webster)

hyperparameter

a human-changeable parameter affecting the structure and training of a neural network

as opposed to parameters, which are internal to a neural network and much more numerous

CNN

- convolutional neural network
- a neural network that moves a filter across multi-dimensional input data to detect patterns and structures in it
- commonly used in computer vision
- <u>StatQuest video</u>

RNN

- recurrent neural network
- a neural network that contains cyclical node references/feedback loops, allowing it to remember previous time steps
- commonly used for time series data and language processing
- <u>StatQuest video</u>

LSTM

- long short-term memory
- a fancy type of RNN that has a longer memory and also gates that control its ability to forget
- often used for natural language processing (NLP)
- <u>StatQuest video</u>

Algorithmic Composition

""Supposing, for instance, that the fundamental relations of pitched sound in the signs of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent"

-Ada Lovelace, 1843

WOLFGANG AMADEUS MOZART

Musikalisches Würfelspiel

Table of Measure Numbers

Part One

Part Two

I II IH IV V VI VII VIII

	Ι	11	111	IV	V	Vl	VII	VIII
2	96	22	141	41	105	122	11	30
3	32	6	128	63	146	46	134	81
4	69	95	158	13	153	55	110	24
5	40	17	113	85	161	2	159	100
6	148	74	163	45	80	97	36	107
7	104	157	27	167	154	68	118	91
8	152	60	171	53	99	133	21	127
9	119	84	114	50	140	86	169	94
10	98	142	42	156	75	129	62	123
11	3	87	165	61	135	47	147	33
12	54	130	10	103	28	37	106	5

2	70	121	26	9	112	49	109	14
3	117	39	126	56	174	18	116	83
4	66	139	15	132	73	58	145	79
5	90	176	7	34	67	160	52	170
6	25	143	64	125	76	136	1	93
7	138	71	150	29	101	162	23	151
8	16	155	57	175	43	168	89	172
9	120	88	48	166	51	115	72	111
10	65	77	19	82	137	38	149	8
11	102	4	31	164	144	59	173	78
12	35	20	108	92	12	124	44	131

Table of Measures

	Letter	Frequency (Hz)	Letter	Frequency (Hz)
`	Α	440	Μ	660
	В	458.33	Ν	678.33
	\mathbf{C}	476.66	0	696.66
	D	495	Р	715
	\mathbf{E}	513.33	\mathbf{Q}	733.33
	\mathbf{F}	531.66	R	751.66
	G	550	\mathbf{S}	770
	Η	568.33	Т	788.33
	I/Y	586.66	U	806.66
	Ĵ	605	V/W	825
	K	623.33	x	843.33
	\mathbf{L}	641.66	Y/Z	861.66

 Table 1: Padberg's Letter to Frequency Mapping

3. PYPADBERG

Processing Logs							
INFO:: Received Text - harriet padberg							
INFO:: Processing - letter: h, freq: 568.3333, rhythm_interval:	1						
INFO:: Processing - letter: a, freq: 440, rhythm_interval: 2							
INFO:: Processing - letter: r, freq: 751.6666, rhythm_interval:							
INFO:: Processing - letter: r, freq: 751.6666, rhythm_interval:	4						
INFO:: Processing - letter: i, freq: 586.6666, rhythm_interval:	8						
INFO:: Processing - letter: e, freq: 513.3333, rhythm_interval:	22						
INFO:: Processing - letter: t, freg: 788.3333, rhythm_interval:	44						
INFO:: Processing - letter: p, freq: 715, rhythm_interval: 165							
INFO:: Processing - letter: a, freg: 440, rhythm interval: 1							
INFO:: Processing - letter: d, freg: 495, rhythm_interval: 2							
INFO:: Processing - letter: b, freg: 458.3333, rhvthm interval:							
INFO:: Processing - letter: e, freq: 513.3333, rhythm interval:	4						
INFO:: Processing - letter: r, freg: 751.6666, rhythm interval:	8						
INFO:: Processing - letter: g, freg: 550, rhythm interval: 22							
at rod, cool rul run-rucerer r							

Figure 1: The processing screen in the PyPadberg Application, displaying how characters are mapped to frequencies and rhythms.

ML Music Generation

Al Audio Generators for Music

- <u>Al Jukebox (OpenAl)</u>, 2020
- <u>MusicLM</u> (Google), text-to-music, 2023
- Style or timbre transfer
- Harmony generators