Ray: A System for Distributed Applications
This video is also available in the GOTO Play video app! Download it to enjoy offline access to our conference videos while on the move.
Ray (ray.io) is a framework for scaling Python applications from single machines to large clusters. It is used in several ML/AI systems and production deployments.
Dean will explain common problems in scalable, distributed computing, particularly for high-performance ML/AI applications that motivated that creation of Ray. You’ll see how Ray solves them for Python-based systems (and possibly other languages in the future).
In particular, Ray supports rapid distribution, scheduling, and execution of fine-grained “tasks”, a more natural decomposition of work for many problems compared to coarse-grained decomposition. Sequencing of dependent tasks cluster-wide is also transparent and intuitive.
Ray also manages distributed state using the popular Actor model, which is essential for the next generation of “serverless” computing, where these services are stateful.
Whether or not you are a Python or ML/AI developer, the general lessons discussed are broadly applicable.
-
Lunch KeynoteAnita SenguptaWednesday Apr 29 @ 12:40 PM
-
Racing RobocarsChris AndersonTuesday Apr 28 @ 4:30 PM
-
Inspiring Experiences Teaching Kids to CodeJessica EllisMonday Apr 27 @ 4:30 PM
-
War is Peace, Freedom is Slavery, Ignorance is Strength, Scrum is AgileAllen HolubFriday May 1 @ 12:40 PM
-
Data Science for Everyone with ISLE: Leveraging Web Technologies to Increase Data AcumenRebecca NugentWednesday Apr 29 @ 9:00 AM
-
Data Science and Expertise: COVID-19Rajiv ShahMonday Apr 27 @ 9:00 AM
-
A Guided Tour at D-WaveMurray ThomThursday Apr 30 @ 12:40 PM